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Stereoselective
(3 3)-Carbocyclization of Enamines 
with Nitroallylating Reagents

Dieter Seebach*, Giorgio Calderari111, Walter L. Meyer121, Andrew Merritt131, 
and Louis Odermann141

Abstract: The enamines from open-chain (3-pentanone) and cyclic (cyclopentanone, 
cyclohexanones, ^-tetralone) ketones and the amines pyrrolidine, morpholine or (S)-2- 
methoxymethyl-pyrrolidine combine with £-3-phenyl-2-nitro-2-propen-l-yl or £-2- 
nitro-2-hepten-l-yl pivalate (NPP derivatives 6) to form six-membered rings. Monocyclic 
(7, 8) and bicyclic (9-14) products containing four new asymmetric carbon atoms are 
obtained stereoselectively. The diastereoselectivity observed with the chiral, proline­
derived enamines of cyclohexanones is generally higher, and they furnish enantiomeri- 
cally pure products (cf. the (+)-2-butyl-7-/ert-butyl-3-nitro-bicyclo[3.3.1]nonan-9-one 
14, formed in 37% yield as one of sixteen stereoisomers!).

There are several methods of carbocycli­
zation leading to six-membered rings from 
a C4- and a C2-component, see Scheme 1. 
The most important ones are the Diels-Al­
der reaction151 (a) and the Robinson anella- 
tion[6J (b). In both, simple starting materi­
als can be used and common functional 
groups are required, both can also be ap­
plied to multifunctional reactands, and 
both can be carried out regio- and stereose­
lectively. There is a lack of similarly attrac­
tive methods by which six-membered rings 
are formed from two C3-components17-91; 
Lawton’s a-bromomethyl-acrylate[71 and 
Biichi’s allylidene-phosphorane181 methods 
are notable exceptions1’1.

We have now found that enamines and 
2-nitro-allylic esters1101 combine to form 4- 
nitro-cyclohexanones (c) in what appears 
to be a most valuable synthetic transfor­
mation. It follows the same scheme as 
Lawton’s reaction (NO2 vs. COOR) and is 
especially promising due to the stereoselec­
tivity observed with substituted reactands.

As characteristic examples of enamines, 
the morpholino and pyrrolidino deriva­
tives (1-5 in Scheme 2) of 3-pentanone, 
cyclopentanone, cyclohexanones, and p- 
tetralone were enabled to react with two 
typical, readily available NPP1111 deriva­
tives (6) of ^-configuration1121, see proce­
dure below. The products 7-14 of cycliza­

tion (Scheme 3) were usually obtained in 
modest yields (not optimized) as single 
diastereomers, and with the (5)-2-meth- 
oxymethyl-pyrrolidino enamines1131 3b, 4b, 
and 5b the corresponding optically active 
products (10-14) were formed in enantio­
meric excesses (ee) above 90%, see Table 
1. The configuration, conformation114,151, 
and enantiomeric ratios of the products 
7-14 were established unambiguously by 
elaborate high-field NMR techniques. The 
sense of chirality of the products from (£)- 
2-methoxymethyl-pyrrolidino enamines 
follows from the known (Re, Re) topicities 
with which they add to simple Michael ac­
ceptors [1!I, see 15, 16 in Scheme 4 and the 
bonds marked by dotted lines in the for­
mulae of Scheme 3. For yields and charac­
teristic data of the products see Table 1. 
Except for the monocyclic case, the inter­
mediates present before hydrolysis were 
not isolated or identified. Only the mono- 
cyclic product of type 17 can possibly be 
stabilized by proton transfer from the 
a-NR2 to the a-NO2 position to form a 
nitroenamine (8), hydrolysed to 7a and 
deuterolysed to 7b, so that two of the four 
new asymmetric carbon atoms originate 
in selective deprotonation/protonation1"’1 
steps. Two mechanistic features are prob­
ably most important for the observed ste­
reoselectivity of the reaction: (a) The high 
reactivity of nitroolefins as Michael accep­
tors secures that the first step of combina­
tion with the enamine occurs at low tem­
perature and is kinetically controlled1151; 
(b) both, the NO2 group in nitroolefins and 
the NR2 group in enamines provide a 
strong preference for a single, namely the 
£-configuration of the double bonds, a 
prerequisite for selectivity1171.

Optimizations, including the use of 
other NPP derivatives1121 and of other 
chiral enamines, as well as applications of 
the method are currently under investiga­
tion.

Typical procedure: The nitroolefin (6, 
3-20 mmol in ca. 30 mL dry CH2C12) and
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Scheme 2

2 3a:R1=R2=H
3b: R1=CH2OCH3,R=H
4a; R1=H,R2=t-Bu
4b: r1=CH2OCH3, 

R2=t-Bu

5a:R=H
5b:R = CH2oCH3

6a:R = C6H5 
6b:R=C4H9
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Table 1. Preparation of racemic (±) and of enantiome- 
rically pure products 7-14 (all [a]’5 in CH2C12, c = 1-2) 
from enamines 1, 2, 3a, 4a, 5a and 3b, 4b, 5b, respec­
tively, and phenyl or butyl NPP (6a, 6b). % ds: content 
of the diastereomer (formulae 7-14) before crystalliza­
tion. %: yield after recrystallization. All products gave 
correct (±0.3 %) elemental analyses.
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60% from 1 and 6a. > 95% ds, m.p. 93- 
94°C.
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to room temperature overnight, 5-20 mL 
In HC1 and 5-10 mL H2O were added, and 
the mixture was heated at reflux for 1 h. 
Extraction of the aqueous phase with 
CH2C12, washing and drying the combined 
organic layers, evaporation of the solvent, 
and flash-chromatography gave the prod­
ucts (7a, 9-14) which were recrystallized 
from ether or ether/CH2Cl2. Careful opti­
mization of these conditions may be neces­
sary for any given case. For the hydrolysis 
step in the preparation of the monocycle 7a 
see procedure in|l7bI.
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