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New Reactions of

Vinylindoles

as Heterocyclic Dienes
with 4-Phenyl-1,2,4-
triazoline-3,5-dione:
Non-Concerted versus
Concerted Processes™”

Ulf Pindur* and Myung-Hwa Kim

Abstract. The reactions of some 3-vinylindoles and one 2-vinylindole with 4-phenyl-1,2,4-
triazoline-3,5-dione (PTAD) were investigated. In dependence on the structure of the
vinylindole, the experimental results revealed the occurrence in some cases of a non-con-
certed step to furnish Michael-type adducts and in other cases of a probably concerted
Diels- Alder reaction to furnish novel pyridazinofslindoles, respectively. In one particular
case, PTAD-catalysed dimerisation of the 3-vinylindole took place.

Introduction

Indoles with azo or hydrazo functions
integrated into the cyclic system have at-
tained great importance in the preparative
development of pharmacologically active
lead substances [1] {2]. For the syntheses of
compounds of these types, the regio- and
stereocontrolled functionalisation and/or
[6] anellation of 2- and 3-vinylindoles with
highly reactive azo-dienophiles or azo-
enophiles have meanwhile been success-
fully developed [1-5]. In the present pre-
liminary communication, we report on fur-
ther new results from the reactions of some
selected 3- and 2-vinylindoles with the
highly electrophilic dienophile 4-phenyl-
1,2,4-triazoline-3,5-dione (PTAD). Tria-
zoline-diones have frequently been used as
dienophiles for the introduction of N func-
tionalities and represent one of the most
reactive dienophile systems known to date

6] [7]-

Results and Discussion

Our present results provide the first con-
vincing experimental evidence for the oc-
currence in vinylindole chemistry of con-
certed (e.g. frontier orbital-controlled) and
non-concerted (e.g. polarity-controlled)
processes [8] in dependence on the struc-
ture of the vinyl-indole investigated and on
the reaction conditions employed. On the
basis of the frontier-orbital theory, the hy-
pothesis that, in cases of high energy
differences  between =~ HOMO(diene)
— LUMO(dienophile) and HOMO(di-
enophile) — LUMO(diene), a two-step
mechanism would be favoured [8] over a
concerted process is generally accepted. On
the other hand, Diels- Alder reactions with
the electrophilic PTAD demonstrate [7]
that this assumption should not be applied
universally. However, in spite of the rela-
tively low-lying E(LUMO) of PTAD
(E =—1.823 eV according to our own
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MNDO calculations), non-concerted
mechanisms also have to be taken into
consideration; this has been reported in [7].

The methyl indol-3-ylacrylates 1a and
1b react with PTAD both under kinetic
and under thermodynamic control
(toluene, CH,Cl,, r.t., 2 d; CH,Cl,, —=75°,
6 h) to furnish exctusively the Michael-type
adducts 2a and 2b (m.p. 225° and 211°,
respectively)  with  (Z)-configuration
{(Scheme 1). A primarily expected Diels-
Alder adduct could not be detected analyti-
cally. The formation of products 2 can be
described formally as proceeding through
the prototropic shift-stabilised, zwitter-
ionic intermediate of a non-concerted
Diels-Alder reaction [9]. This simple N—C
bond formation process between the reac-
tants is probably a consequence of the
highly polarised electronic structure of the
‘push-pull’ moiety in 1 (as is indicated by
BC-NMR spectroscopic data) [10] and of
the strongly electrophilic nature of PTAD.

In the reaction of PTAD with the highly
reactive 3-(prop-l-enyl)indole 1c [10], a
formally PTAD-catalysed dimerisation
takes place. Apart from the production of
polymers, the only compound formed that
could be isolated was the anellated urazole
5 (CH,Cl,, =75° 1 h; 20°, 2 h; m.p. 2829),
The reaction sequence is assumed to start
with a regioselective electrophilic addition
of PTAD to the electron-rich vinyl func-
tion of 1c [10] to give the probable 1,4-
dipolar intermediate 3 [9] (Scheme 2). The
stabilisation process via prototropic shift
to yield the Michael-type adduct is too
slow in this case. The intermediate 3 is,
instead, assumed to be captured initially by
a further molecule of 1c [10] (which has a
higher nucleophilicity when compared
with 1a) more rapidly. Then, the resulting
intermediate 4 undergoes regio- and
stereoselective cyclisation in accordance
with Baldwin’s rules [11] to furnish only a
single diastereoisomer 5 (according to
HPLC). In spite of the application of an
(E/Z)-mixture of 1c, the product configu-
ration indicates that first of all the (E)-iso-
mer of 1c is involved in the cyclisation se-
quence for steric reasons.

The 3-vinylindole 1d, which is sterically
less hindered and less polarised at the vinyl
group, reacted with PTAD under kinetic
control (in CH,Cl, or pure MeOH, ~75°,
20 min) to produce the cycloadduct 6 (m.p.
211°) in almost quantitative yield (Scheme
3). The Diels-Alder reaction was so rapid
that a potential intermediate could not be
detected by analytical methods (TLC, UV,
NMR) nor even be trapped in pure MeOH
as the solvent at —75° Hence, we postulate

* Correspondence: Prof, Dr. U. Pindur
Department of Chemistry and Pharmacy
University of Mainz

Saarstrasse 21, D-6500 Mainz 1

** This work was supported financially by the Deutsche
Forschungsgemeinschaft (Bonn/FRG), the Fonds der
Chemischen Industrie (FRG), and Boehringer Ingelheim
KG (FRG).



FORSCHUNG

340

Scheme 2

{o
W o We
N CHyCly N

Scheme 3

= 4 [.3-H
PTAD .
w CH2Cl2 or Q_fN}\l\fo 4

ﬁ-exo-trig

. e
®

123%)

In=3-N- methylindolyl

N
MeOH N
R VA
R:SOzph
1d 6 (97%)
MeQOH
20°C,5h

10 (25°%) 8

Scheme 4 =
PTAD
WGMQ CH,Cly
|
PhQ,S

(2) le

Scheme 5

No—7  CHyClpor

| MeOH
Me

1

Me

MeQ
7 Gyl

- 0

N_-O
N F

N
[ H
PhO,S Z)f >

11 (92%)])

(25°%)

h

Q:Q”v"

(25°%)

CHIMIA #4 (1990) Nr. 10 (Oktober)

for this particular reaction a concerted
mechanism involving a (HOMOy,,
— LUMO;popnic)-controlled {4, +2,] step
[10] [12]. However, the isolated cycload-
duct 6, which does not experience stabilisa-
tion via a formal [1,3]-prototropic shift to
form a tetracyclic indole compound 7 (as
shown by temperature-dependent 'H-
NMR spectroscopy) [13], does not possess
sufficient stability to exist in nucleophilic
protic solvents (such as MeOH) at r.t. On
the other hand, in aprotic polar solvents
(such as DMSO), 7 is extremely stable and
remains unchanged for several days at r.t.
In MeOH at 20°, compound 6 was cleaved
at the aminal moiety within ca. 5 h to form
the two solvolysis products 9 and 10 (m.p.
163° and 143°, respectively); the cleavage
involves the 1,4-dipolar intermediate as a'
and a’ reagent [9] [14], most probably in the
protonated form 8. The driving force for
this reaction is probably the gain of ‘indoli-
sation’ energy achieved by the formation
of 9 and, in addition, the formation of a
stable secondary lactam. _

It is generally accepted that the product
configuration in Diels-Alder reactions can
be a useful probe for predicting the reac-
tion mechanism (two-step vs. one-step pro-
cess) [8]. Thus, for example, the (Z)-
methoxypropenyl-substituted indole le re-
acted very rapidly and stereoselectively (no
other isomer was detected) with PTAD to
yield the [4 + 2] cycloadduct 11 (Scheme 4;
CH,Cl,, —75°, 10 min; m.p. 171°). The con-
figuration of the tested 3-vinylindole le
was retained in the transition state. Hence,
we assume a concerted process for this re-
action.

In analogy with compound 6, the MeO-
substituted cycloadduct 11 is also unstable
in MeOH at r.t. (TLC monitoring of reac-
tion) but definable reaction products could
not be isolated. We have been able to per-
form an X-ray structure analysis of 11 (Fig.
I) and the configurational predictions
based on 'H-NMR measurements were un-
ambiguously confirmed. In addition, the
geometry of the five-ring anellated 1,2-di-
azine reveals a kinetically controlled Diels-
Alder reaction via an endo-transition state,
This endo-transition state should be en-
ergetically favoured by secondary frontier-
orbital overlap [8].

The reaction of the (£)-isomer of 1e with
PTAD is, on the other hand, more complex
and we have not yet been able to character-
ise any products.

In contrast to the several described reac-
tions of PTAD with 3-vinylindoles, 2-
vinylindoles react with PTAD to produce
extremely stable (4 + 2] cycloadducts [4].
In continuation of these investigations, we
have now examined the corresponding re-
actions of the sterically less hindered 2-
vinylindole 1f [10]. In addition to the for-
mation of polymers, when performed
in CH,Cl, or MeOH, cycloadduct 12
(CH,Cl,, —75°, 20 min; m.p. 201°) was
formed (Scheme 5). We have not been
able to detect any potential intermediate
by the available analytical methods.
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Fig. 1. Schakal plot of the molecular structure of 11 (space group: P2,/c, Z = 4) [15]

Fig. 2. Energy-minimised molecular struc-
ture of 5 (molecular modeling force field
programme Alchemy IT™) also illustrating
some of the diagnostically relevant 'H, 'H-
NOE's detected at 400 MH:z. The bicyclic
ring system and the #-orientated bonds ari-
sing from the bicyclic system are shown as
thickened lines for improved clarity.

Therefore, for this reaction we assume
a (HOMO,,,, — LUMOy,qopi)-controlled
cycloaddition via a concerted step.

The constitutions and relative configu-
rations of the described products were elu-
cidated, mainly with the help of high-reso-
lution NMR spectroscopic methods [16].

The diagnostically relevant 'H, 'H-NOE’s
are shown in Fig. 2 for § which possesses
four stereocentres.

In summary, the new results presented
above demonstrate for the first time the
broad reactivity pattern obtainable by
means of concerted vs. non-concerted
mechanisms for the reactions of some se-
lected vinylindoles with PTAD. The results
reflect throughout the common reactivity
pattern of PTAD towards 1,3-butadienes
very well [7], whereby, depending on the
diene structure, either simple electrophilic
addition or concerted [4, + 2] cycloaddi-
tions processes are involved.
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