Scheme 3

control. At the same time, the distance between the carbene and the double bond decreases, and one might expect more influence by the olefinic substituents. This
is, however, compensated, because the substituents move away from the carbenic centre owing to rehybridization of the olefinic C -atoms.

This work was supported by the Swiss Na tional Science Foundation (project No. 20-27466.89). The authors are indebted to Prof. A. Pfaltz for helpful hints for the preparation of II.

Received: January 9, 1992

[^0]
Formal Synthesis of (\pm)-Coriolin by Diastereocontrolled Nickel(0)Catalyzed 'Metallo-ene-type’ Cyclization/Methoxycarbonylation

Wolfgang Oppolzer* and Akira Ando

Abstract. Bicyclooctanone (\pm)-2, an advanced intermediate for the synthesis of (\pm)coriolin, has been synthesized in ten steps starting from 2,2-dimethylpent-4-enal (7). The key step $6 \rightarrow \mathbf{3}+\mathbf{1 1}$ is a highly diastereoselective, Ni^{0}-catalyzed, tandem intramolecular alkene allylation/carbonylation reaction.

The development and creative application of transition-metal-catalyzed reactions is presently at the forefront of organic synthesis [1]. Thus, recently discovered $\mathrm{Pd}^{0^{-}}$- and Ni^{O}-catalyzed intramolecular alkene (alkyne) allylations I \rightarrow II show
attractive perspectives for the stereocontrolled construction of various carbo- and heterocyclic systems (Scheme 1) [2].

This holds particularly for the tandem allylation/carbonylation I \rightarrow II \rightarrow III as illustrated by the syntheses of pentalenol-
actone E methyl ester [3], (+)-3-isorauniticine [4], and, most recently, [5.5.5.5]fenestranes [5]. We present here a rational application of this process in a synthesis of the triquinane terpenoid coriolin which features the topological bias of a preexisting stereocenter over developing stereocenters in the carbometalation step I \rightarrow II. Coriolin, a metabolite from the Basidiomycete Coriolus consors has been assigned structure 1 (Scheme 2) [6].

Reports of antibiotic and antitumor activity contributed to the popularity of 1 as a test case for cyclopentenone-annulation methodology [7]. The synthesis of $(\pm)-\mathbf{1}$, reported by Exon and Magnus thus proceeds via the bicyclo[3.3.0]octanone 2 , in turn assembled by means of a stereoselective intramolecular Pauson-Khand process [7e].

[^1]Scheme 3

control. At the same time, the distance between the carbene and the double bond decreases, and one might expect more influence by the olefinic substituents. This
is, however, compensated, because the substituents move away from the carbenic centre owing to rehybridization of the olefinic C -atoms.

This work was supported by the Swiss Na tional Science Foundation (project No. 20-27466.89). The authors are indebted to Prof. A. Pfaltz for helpful hints for the preparation of II.

Received: January 9, 1992

[^2]
Formal Synthesis of (\pm)-Coriolin by Diastereocontrolled Nickel(0)Catalyzed 'Metallo-ene-type’ Cyclization/Methoxycarbonylation

Wolfgang Oppolzer* and Akira Ando

Abstract. Bicyclooctanone (\pm)-2, an advanced intermediate for the synthesis of (\pm)coriolin, has been synthesized in ten steps starting from 2,2-dimethylpent-4-enal (7). The key step $6 \rightarrow \mathbf{3}+\mathbf{1 1}$ is a highly diastereoselective, Ni^{0}-catalyzed, tandem intramolecular alkene allylation/carbonylation reaction.

The development and creative application of transition-metal-catalyzed reactions is presently at the forefront of organic synthesis [1]. Thus, recently discovered $\mathrm{Pd}^{0^{-}}$- and Ni^{O}-catalyzed intramolecular alkene (alkyne) allylations I \rightarrow II show
attractive perspectives for the stereocontrolled construction of various carbo- and heterocyclic systems (Scheme 1) [2].

This holds particularly for the tandem allylation/carbonylation I \rightarrow II \rightarrow III as illustrated by the syntheses of pentalenol-
actone E methyl ester [3], (+)-3-isorauniticine [4], and, most recently, [5.5.5.5]fenestranes [5]. We present here a rational application of this process in a synthesis of the triquinane terpenoid coriolin which features the topological bias of a preexisting stereocenter over developing stereocenters in the carbometalation step I \rightarrow II. Coriolin, a metabolite from the Basidiomycete Coriolus consors has been assigned structure 1 (Scheme 2) [6].

Reports of antibiotic and antitumor activity contributed to the popularity of 1 as a test case for cyclopentenone-annulation methodology [7]. The synthesis of $(\pm)-\mathbf{1}$, reported by Exon and Magnus thus proceeds via the bicyclo[3.3.0]octanone 2 , in turn assembled by means of a stereoselective intramolecular Pauson-Khand process [7e].

[^3]Our approach to the key intermediate 2 is summarized by the disconnective analysis depicted in Scheme 2. Hence, formation of the $\mathrm{C}(2)-\mathrm{C}(9)$ bond $(\mathbf{6} \boldsymbol{\mathbf { 5 } \rightarrow \mathbf { 4 }) \text { , }}$ coupled with CO insertion between $\mathrm{C}(3)$ and $C(8)$ and at $C(12)$ would generate rings B and C of coriolin in a single operation. In view of model studies, we expected to achieve excellent induction by the resident center $\mathrm{C}(1)$ when employing Ni^{0} catalysis [8].

Putting this plan into practice (Scheme 3) aldehyde 7 was successively treated with lithiated 1-[(tetrahydropyran-2-yl)-oxy]prop-2-yne ($\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{OTHP}$), (t butyl)dimethylsilyl chloride (TBDMSCl), and pyridinium p-toluenesulfonate (PPTS), which gave enynol 8 in 70% overall yield.

Reduction of the $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathbf{8}$ by sodiumbis(methoxyethoxy)aluminum hydride ($\mathrm{Red}-\mathrm{Al}$) in $\mathrm{Et}_{2} \mathrm{O}$ [9], conversion of the alcohol 9 to the primary bromide 10 (with $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$), and Finkelstein reac-
tion provided (E)-iododiene 6 (69% from 8).

We then proceeded to the key reaction: stirring acyclic diene 6 with $\mathrm{Ni}(\mathrm{COD})_{2}$ (COD = cyclooctadienyl; 0.25 mol-equiv.) and 1,4-diphenylphosphinobutane (dppb, 0.125 mol-equiv.) in THF-MeOH (4:1) under carbon monoxide (1 atm) at 60° for 16 h gave a $3: 2$ mixture of expected bicyclic ketoester $\mathbf{3}$ and isomeric lactone 11 in 63% yield. On raising the amount of $\mathrm{Ni}(\mathrm{COD})_{2}$ to 0.5 mol-equiv. the combined yield of $\mathbf{3}+\mathbf{1 1}$ increased to 70%. No other stereoisomer could be isolated from the reaction mixture. Each one of the separated (chromatography) cyclization products furnished the same oxo-acid 12 (98%) on mild saponification with LiOH . It, thus, follows that the cyclization $6 \rightarrow 3+11$ is completely stereoselective within experimental error, and that the synthesis of 1 can be pursued with the non-separated mixture $\mathbf{3 / 1 1}$. Precedence from previous model experiments allowed a tentative

Scheme 1

assignment of the depicted relative configuration of the new stereocenters $C(9)$, $C(2)$, and $C(3)$ in 3 and 11 [8]. The critical cis-disposition of the $\mathrm{C}(1)-\mathrm{OSi}$ group with the angular H -atoms at $\mathrm{C}(2)$ and $\mathrm{C}(9)$ was confirmed by the following two step conversion of oxo-acid 12 to Magnus' coriolin precursor 2. Reductive Barton-type decarboxylation [11] of $\mathbf{1 2}$ by esterification with N-hydroxy-2-thiopyridone/dicyclohexylcarbodiimide (DCC)/4-(dimethylamino) pyridine (DMAP) and photolysis of the resulting crude ester in the presence of t-BuSH, chromatography over Florisil, and extraction of t-butyl 2'-pyridyl disulfide with 15% aq. HCl (from $\mathrm{Et}_{2} \mathrm{O}$) provided nor-compound 13 in 58% yield. Stereoselective C(3)-allylation of 13 by successive treatment with NaH and allyl bromide in DME gave the key intermediate (\pm)-2 in 46% yield (79% from a 4:1 C(3)-epimer mixture of 13 [7e]). Thus obtained (\pm)-2, identified by comparison (IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$) with previously prepared $(\pm)-2[7 \mathrm{e}]$, showed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum the characteristic $\mathrm{C}(1)$-doublet [7 e$][7 \mathrm{~g}]$ at $\delta=3.65 \mathrm{ppm}(J=7.5 \mathrm{~Hz})$.

In summary, key intermediate $\mathbf{2}$ for the synthesis of (\pm)-coriolin (1) has been prepared from the simple aldehyde 7 via a sequence of ten steps in 9% overall yield. The strategic allylation/carbonylation step forms four C, C bonds in a single operation with virtually 100% stereoselectivity. This scheme also lends itself to a synthesis of $(-)$-coriolin from $(R)-6$, which in turn should be readily accessible via asymmetric addition of an (1-alkenyl)zinc reagent to aldehyde 7 [12].

Scheme 2

Scheme 3

Financial support of this work by the Swiss National Science Foundation, Sandoz Ltd., Basel and Givaudan SA, Vernier, is gratefully acknowledged. We thank Dr. J.-Z. Xu for preliminary experiments. We are grateful to Mr. J.P. Saulnier, Mr. A. Pinto, and Mrs. C. Clément for NMR and MS measurements.

Experimental

All reactions were carried out under Ar unless otherwise specified. All solvents and solns. that were used in Ni-catalyzed reactions were rigorously degassed before use. Solvents were dried by distillation from drying agents as follows: THF (Na), $\mathrm{Et}_{2} \mathrm{O}$ (Na), toluene (Na), DME (Na), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, benzene $\left(\mathrm{CaH}_{2}\right)$, MeOH (Mg), $\mathrm{EtOH}(\mathrm{Mg})$. 'Workup' denotes extraction with $\mathrm{Et}_{2} \mathrm{O}$, washing of the org. phase with sat. aq. NaCl soln., drying (MgSO_{4}), and evaporation in vacuo. Silica gel 60 (Merck 9385) was used for flash chromatography (FC). Column chromatography on Florisil (Fluka). IR: Polaris/Matteson, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise noted. NMR: ${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz in CDCl_{3}, standard $\mathrm{CHCl}_{3}(\delta=7.27 \mathrm{ppm}), J$ in Hz. MS: m / z (rel. \%).

4-[(tert-Butyl)dimethylsilyloxy]-5,5-dimeth-yloct-7-en-2-yn-1-ol (8). A 1.6 m soln. of BuLi (hexane, $16.2 \mathrm{ml}, 26 \mathrm{mmol}$) was added dropwise to a soln. of 1-[(tetrahydropyran-2-yl)oxy]prop-2-yne ($3.64 \mathrm{~g}, 26 \mathrm{mmol}$) in THF (20 ml) at -78° and the mixture was stirred for 1 h . Slow addition of a soln. of 2,2-dimethylpent-4-enal (7) (2.26g, $20 \mathrm{mmol})$ in THF (6 ml), stirring of the mixture at -78° for 1 h , adding a soln. of $(t-\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{SiCl}$ ($3.92 \mathrm{~g}, 26 \mathrm{mmol}$) in THF (10 ml), heating the
mixture for 24 h under reflux, addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, workup and FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$ and 40:1) gave 4-[(t-butyl)dimethylsilyloxy)-5,5-dimethyl-1-[(tetrahydropyran-2-yl)oxy]oct-7-en-2-yne as a colorless oil ($5.37 \mathrm{~g}, 78 \%$). A soln. of this derivative ($1.77 \mathrm{~g}, 4.82 \mathrm{mmol}$) and pyridinjum p-toluenesulfonate ($61 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{EtOH}(25 \mathrm{ml})$ was heated at 50° for 41 h . Cooling to r.t., addition of solid NaHCO_{3}, workup and FC (hexane/Et ${ }_{2} \mathrm{O} 5: 1$) gave alcohol $8(1.25 \mathrm{~g}, 70 \%$ from 7) as a colorless oil. IR: 3605, 2960, 2935, $2860,1640,1475,1390,1365,1250,1130,1080$, 1010, 925, 855, 780. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.09(s, 3 \mathrm{H}) ; 0.15$ $(s, 3 \mathrm{H}) ; 0.92(s), 0.93(s)(15 \mathrm{H}) ; 1.73$ (br. $t, J=$ $6,1 \mathrm{H}$) 2.07 (br. $d d, J=14,7,1 \mathrm{H}) ; 2.13$ (br. $d d$, $J=14,7,1 \mathrm{H}) ; 4.06(t, J=2,1 \mathrm{H}) ; 4.30(d d, J=$ $6,2,2 \mathrm{H}) ; 5.00-5.06(2 \mathrm{H}) ; 5.76-5.86(1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR:-5.24 (q);-4.24 (q); 18.18 (s); $22.54(q)$; 22.66(q);25.79(q);39.14(s); 42.54(t); 51.19(t); $70.53(d) ; 83.54(s) ; 86.15(s) ; 117.24(t) ; 135.13$ (d). MS: 225 (3.5, $\left.\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right), 199$ (8.2), 143 (2.5), 133 (8.6), 105 (13), 91 (10), 83 (14), 75 (100), 73 (56), 55 (30). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$: C 68.03, H 10.70 ; found: C 67.97, H 10.65 .
(E)-4-[(tert-Butyl)dimethylsilyloxy]-5,5-dimethylocta-2,7-dien-I-ol (9). A soln. of 8 (153 $\mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{ml})$ was added slowly at 0° to a 0.7 m soln. of sodium bis(2methoxyethoxy)aluminum hydride in toluene/ $\mathrm{Et}_{2} \mathrm{O}(1: 4,1.26 \mathrm{ml}, 0.88 \mathrm{mmol})$. Stirring of the mixture at 0° for 10 min , then at r.t. for 2 h , addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at 0°, addition of 0.1 l aq. HCl , workup, and FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 7: 1$) furnished 9 ($129 \mathrm{mg}, 84 \%$). IR: 3610, 2960, 2930, $2860,1640,1470,1380,1360,1250,1090,1065$, 1010, 980, 920, 860, 840, 750. 'H-NMR: -0.01 $(s, 3 \mathrm{H}) ; 0.04(s, 3 \mathrm{H}) ; 0.81(s, 3 \mathrm{H}) ; 0.84(s, 3 \mathrm{H})$; $0.90(s, 9 \mathrm{H}) ; 1.32(\mathrm{br} . s, 1 \mathrm{H}) ; 1.96(d d, J=14,7$,
$1 \mathrm{H}) ; 2.06(d d, J=14,7,1 \mathrm{H}) ; 3.77(d, J=6,1 \mathrm{H})$; 4.16(br. $s, 2 \mathrm{H}) ; 4.97-5.04(2 \mathrm{H}) ; 5.66-5.76(2 \mathrm{H})$; $5.82(d d t, J=17,10,7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:-4.94(q)$; -3.57 (q); $18.18(s) ; 22.89(q) ; 25.91(q) ; 38.48$ $(s) ; 42.99(t) ; 63.29(t) ; 79.96(d) ; 116.85(r) ;$ $130.82(d) ; 132.22(d) ; 135.58(d)$. MS: 227 (0.8 , $\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}^{+}\right.$), 201 (15), 145 (10), 135 (3.3), 131 (11), 93 (7.7), 83 (46), 75 (80), 73 (100), 55 (62). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C 67.55, H 11.34; found: C 67.30, H 11.28.
(E)-I-Bromo-4-[(tert-butyl)dimethylsilyl-oxy/-5,5-dimethylocta-2,7-diene (10). CBr_{4} (195 $\mathrm{mg}, 0.59 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(304 \mathrm{mg}, 1.16 \mathrm{mmol})$ were added to a soln. of $9(150 \mathrm{mg}, 0.53 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$, and the mixture was stirred at r.t. for 4.5 h . The precipitate was removed by filtration through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. Evaporation of filtrates and FC (hexane) of the residue provided 10 ($160 \mathrm{mg}, 87 \%$) as a colorless oil. IR: $2960,2930,2855,1640,1470,1390,1365,1250$, $1205,1105,1065,1005,970,920,860,780 .{ }^{1} \mathrm{H}-$ NMR: $0.00(s, 3 \mathrm{H}) ; 0.03(s, 3 \mathrm{H}) ; 0.80(s, 3 \mathrm{H})$; $0.84(s, 3 \mathrm{H}) ; 0.90(s, 9 \mathrm{H}) ; 1.94(d d, J=14,8,1$ $\mathrm{H}) ; 2.04(d d, J=14,7,1 \mathrm{H}) ; 3.75(d, J=6,1 \mathrm{H})$; $3.97(d, J=7,2 \mathrm{H}) ; 4.97-5.05(2 \mathrm{H}) ; 5.71-5.86(3$ H). ${ }^{13}$ C-NMR: $-4.99(q) ;-3.61(q) ; 18.15(s)$; $22.89(q) ; 25.90(q) ; 32.46(t) ; 38.76(s) ; 42.98(t)$; $79.35(d) ; 117.02(t) ; 127.71(d) ; 135.36(d)$; $136.00(d) . \mathrm{MS:} 291\left(0.4,\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{BrOSi}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}\right)$, 289 (0.4), 265 (7.0), 263 (6.7), 209 (3.5), 207 (3.3), 184 (6.1), 135 (7.3), 127 (18), 83 (92), 75 (56), 73 (100), 55 (92). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{BrOSi}$: $\mathrm{C} 55.32, \mathrm{H} \mathrm{8.99}$, found: C 55.12 , H8.82.
(E)-4-[(tert-Butyl)dimethylsilyloxy]-1-iodo-5,5-dimethylocta-2,7-diene (6). A mixture of 10 ($671 \mathrm{mg}, 1.93 \mathrm{mmol}$) and $\mathrm{NaI}(1.45 \mathrm{~g}, 9.67 \mathrm{mmol}$) in acetone $(20 \mathrm{ml})$ was stirred in the dark at r.t. for 13 h . Evaporation of the mixture, trituration of
the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, evaporation, and FC (hexane/Et ${ }_{2} \mathrm{O} 20: 1$) gave iodide $6(716 \mathrm{mg}, 94 \%$) as a pale brown oil. IR: $2960,2930,2860,1640$, $1475,1385,1365,1255,1150,1105,1060,1010$, 970, 915, 860, 840, 780. 'H-NMR: $0.00(s, 3 \mathrm{H})$; $0.02(s, 3 \mathrm{H}) ; 0.79(s, 3 \mathrm{H}) ; 0.83(s, 3 \mathrm{H}) ; 0.90(s$ $9 \mathrm{H}) ; 1.93(d d t, J=13.5,7.5,1,1 \mathrm{H}) ; 2.03(d d t$, $J=13.5,7.5,1,1 \mathrm{H}) ; 3.71(d, J=7.5,1 \mathrm{H}) ; 3.89$ $(d, J=8,2 \mathrm{H}) ; 4.70-5.04(2 \mathrm{H}) ; 5.68(d d, J=15$, 7.5, 1 H); 5.74-5.86 (2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}:-4.99(q)$; -3.52 (q); $5.44(t) ; 18.13(s) ; 22.90(q) ; 25.92(q) ;$ $39.02(s) ; 43.00(t) ; 79.32(d) ; 116.98(t) ; 129.10$ (d); 134.70 (d); 135.42 (d). MS: 337 $\left(1.3,\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{IOSi}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}\right.$), 311 (9.9), 267 (1.9), $255(3.4), 184(23), 135(26), 127(36), 95(12), 83$ (93), 75 (65), 73 (63), 55 (100).

Methyl 8 -[(tert-Butyl)dimethylsilyloxy]-7,7-dimethyl-3-oxobicyclo[3.3.0]octane-2-acetate (3) and 11 -/(tert-Butyl)dimethylsilyloxy]-6-meth-oxy-10,10-dimethyl-5-oxatricyclo[6.3.0.0.6,6 ${ }^{2}$ un-decan-4-one (11). Using a glove box under N_{2}, a suspension of bis(cyclooctadienyl)nickel [10] (39 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in degassed THF/MeOH ($4: 1$, 1.5 ml) was stirred under $\mathrm{CO}(1 \mathrm{~atm})$ for 30 min . Then the degassed soln. of 1,4-bis(diphenylphosphino) butane ($30 \mathrm{mg}, 0.07 \mathrm{mmol}$) in THF/MeOH ($4: 1,1.5 \mathrm{ml}$) was added, and the mixture was stirred at r.t. for 30 min . Addition of $6(219 \mathrm{mg}$, 0.56 mmol in THF/MeOH 4:1, 2 ml), heating of the mixture in the dark at 60° under a constant stream of CO for 16 h , addition of AcOEt, evaporation, and FC (hexane/AcOEt 15:1) furnished the less polar 11 (oil, $48 \mathrm{mg}, 24 \%$). IR: 2950 , $2925,2855,1775,1470,1465,1385,1375,1365$, $1330,1300,1290,1260,1250,1205,1140,1125$, 1115, 1060, 1005, 910, 890, 840. 'H-NMR: 0.03 (s, 3 H); $0.06(s, 3 \mathrm{H}) ; 0.84(s, 3 \mathrm{H}) ; 0.88(s, 9 \mathrm{H})$; $0.96(s, 3 \mathrm{H}) ; 1.19(d d, J=13,7,1 \mathrm{H}) ; 1.58(d d$, $J=18,13,1 \mathrm{H}) ; \mathrm{I} .84(d d, J=13,8,1 \mathrm{H}) ; 2.05-$ $2.13(1 \mathrm{H}) ; 2.38(d, J=18,1 \mathrm{H}) ; 2.50(d d, J=8$, $5,1 \mathrm{H}) ; 2.56-2.64(2 \mathrm{H}) ; 2.92(d d, J=18,8,1 \mathrm{H})$; $3.39(s, 3 \mathrm{H}) ; 3.55(d, J=9,1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR} ;-4.27$ $(q) ;-3.74(q) ; 18.00(s) ; 20.78(q) ; 25.81(q)$; $27.15(q) ; 35.79(d) ; 36.91(t) ; 41.31(t) ; 44.88(s) ;$ $45.03(t) ; 48.51(d) ; 52.61(q) ; 56.25(d) ; 86.92$ (d); 122.23 (s); 176.58 (s). MS: 354 (0.4 , $\left[\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\right]^{+}$), 339 (2.2), 323 (2.2), 297 (100), $265(18), 237(7.2), 191(10), 163(18), 121$ (11), 95 (12), 89 (19), 75 (45), 73 (36). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$: C 64.36, H 9.67; found: C $64.40, \mathrm{H}$ 9.66 .

Further elution furnished the more polar 3 (oil, $77 \mathrm{mg}, 39 \%$). IR: 2950, 2925, 2860, 1740 , $1475,1465,1435,1405,1380,1365,1255,1200$, 1165, 1115, 910, 880, 840. 'H-NMR: 0.03 ($s, 3$ H); 0.06 ($s, 3 \mathrm{H}) ; 0.89(s, 9 \mathrm{H}) ; 0.91(s, 3 \mathrm{H}) ; 0.99$ $(s, 3 \mathrm{H}) ; 1.20(d d, J=13,9,1 \mathrm{H}) ; 1.96(d d, J=13$, $8,1 \mathrm{H}) ; 2.05(d d, J=19,6,1 \mathrm{H}) ; 2.32-2.39(2 \mathrm{H})$; $2.58(d d, J=17,5,1 \mathrm{H}) ; 2.68(d d, J=19,10,1 \mathrm{H})$; $2.75-2.84(1 \mathrm{H}) ; 2.89(d d, J=17,4,1 \mathrm{H}) ; 3.53(d$, $J=7,1 \mathrm{H}) ; 3.66(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:-4.07(q)$; -3.94(q); $18.05(s) ; 21.04(q) ; 25.88(q) ; 27.45$ (q);32.36(d);35.86(t);43.73(s);45.71 (t);46.82 $(t) ; 49.09(d) ; 51.79(q) ; 52.60(d) ; 88.30(d) ;$ $172.20(s) ; 221.08(s) . \mathrm{MS}: 337\left(8.9,\left[\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\right.\right.$ $-17]^{+}$), 323 (4.0), 297 (100), 265 (6.9), 237 (5.3), 201 (8.5), 163 (9.2), 95 (10), 89 (23), 75 (39), 73 (45), $59(10), 55(10)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$: C 64.36, H 9.67; found: C 64.80, H 9.66.

Under analogous reaction conditions, but in the presence of 0.5 mol-equiv. of $\mathrm{Ni}(\mathrm{COD})_{2}$ and 0.25 mol -equiv. of dppb, 6 ($226 \mathrm{mg}, 0.57 \mathrm{mmol}$) furnished 11 ($56 \mathrm{mg}, 28 \%$) and 3 ($85 \mathrm{mg} 42 \%$).

8-[(tert-Butyl)dimethylsilyloxy]-7,7-dimeth-yl-3-oxobicyclo[3.3.0]octane-2-acetic Acid (12). a) From Oxo-ester 3. The mixture of $\mathbf{3}(83 \mathrm{mg}$,
$0.23 \mathrm{mmol})$ and $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}(59 \mathrm{mg}, 1.41 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3: 1,4 \mathrm{ml})$ was stirred at r.t. for 3 h. Addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, acidification to $\mathrm{pH} \sim 3$ with 1 N aq. HCl , addition of solid NaCl , extraction with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the dried extracts gave the crude acid $12(77 \mathrm{mg}, 98 \%)$ which was subjected to the decarboxylation without further purification. IR: $3490,2960,2930,2860$, $1735,1710,1470,1465,1405,1385,1250,1120$, 880, 835. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.04(s, 3 \mathrm{H}) ; 0.07(s, 3 \mathrm{H})$; $0.90(s, 9 \mathrm{H}) ; 0.93(s, 3 \mathrm{H}) ; 0.99(s, 3 \mathrm{H}) ; 1.21(d d$, $J=13,9,1 \mathrm{H}) ; 1.96(d d, J=13,8,1 \mathrm{H}) ; 2.06(d d$, $J=19,7,1 \mathrm{H}) ; 2.33-2.41(2 \mathrm{H}) ; 2.61(d d, J=18$, $6,1 \mathrm{H}) ; 2.65(d d, J=19,10,1 \mathrm{H}) ; 2.72-2.83(1 \mathrm{H})$; $2.92(d d, J=18,4,1 \mathrm{H}) ; 3.54(d, J=7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR: $-4.07(q) ;-3.94(q) ; 18.00(s) ; 21.00(q)$; $25.84(q) ; 27.39(q) ; 32.23(d) ; 35.70(t) ; 43.42$ ($s) ; 45.57(t) ; 46.74(t) ; 48.83(d) ; 52.37(d) ; 88.27$ (d); $177.41(s) ; 221.01(s)$.
b) From 11 . Following the above protocol, 11 ($98 \mathrm{mg}, 0.28 \mathrm{mmol}$) gave identical $12(92 \mathrm{mg}$, 98%).

8-l(tert-Butyl)dimethylsilyloxyJbicyclo-[3.3.0]octan-3-one (13). 4-(Dimethyla-mino)pyridine ($56 \mathrm{mg}, 0.46 \mathrm{mmol}$), N -hydroxy-2-thiopyridone ($46 \mathrm{mg}, 0.36 \mathrm{mmol}$), and then a soln. of 1,3-dicyclohexylcarbodiimide ($95 \mathrm{mg}, 0.46$ mmol) in THF (1.5 ml) were successively added to a soln. of $12(103 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF (2 $\mathrm{ml})$. Stirring of the mixture in the dark at r.t. for 3 h , addition of t-BuSH ($0.34 \mathrm{ml}, 3.0 \mathrm{mmol}$), irradiation with a 500 W tungsten lamp for 20 min, evaporation, chromatography on Florisil (hexane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$), dissolving the evaporated eluate in $\mathrm{Et}_{2} \mathrm{O}$, washing with 15% aq. $\mathrm{HCl}(2 \mathrm{x})$ and evaporation of the dried $\mathrm{Et}_{2} \mathrm{O}$ soln. afforded the nor-compound 13 ($52 \mathrm{mg}, 58 \%$) as a pale yellow oil. IR: $2960,2930,2860,1730,1475$, $1465,1410,1385,1370,1365,1250,1175,1125$, 1110, 1010, 875, 835, 775. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.05(s, 3$ $\mathrm{H}) ; 0.06(s, 3 \mathrm{H}) ; 0.91(s, 9 \mathrm{H}) ; 0.92(s, 3 \mathrm{H}) ; 0.98$ $(s, 3 \mathrm{H}) ; 1.15(d, J=7,3 \mathrm{H}) ; 1.16(d d, J=13,8.5$, $1 \mathrm{H}) ; 1.92(d d, J=13,8.5,1 \mathrm{H}) ; 1.99(d d, J=19$, $5.5,1 \mathrm{H}) ; 2.15-2.23(2 \mathrm{H}) ; 2.58(d d, J=19,10,1$ $\mathrm{H}) ; 2.69-2.79(1 \mathrm{H}) ; 3.48(d, J=7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR: $-4.19(q) ;-4.02(q) ; 17.31(q) ; 18.06(s)$; $21.08(q) ; 25.85(q) ; 27.33(q) ; 31.65(d) ; 43.40$ $(s) ; 44.29(t) ; 46.66(t) ; 48.09(d) ; 54.63(d) ; 87.79$ (d); $222.73(s) . \mathrm{MS}: 297\left(0.4,\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}+1\right]^{+}\right.$.), $281(0.6), 239(14), 197(1.0), 169(3.7), 147(10)$, 121 (11), 75 (100), 73 (29), 57 (11), 55 (11). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C 68.86, H 10.88 ; found: $\mathrm{C} 68.74, \mathrm{H} 10.80$.

2-Allyl-8-[(tert-Butyl)dimethylsilyloxy]-2,7,7-trimethylbicyclo[3.3.0]octan-3-one (2). A soln. of 13 ($42 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dimethoxyethane (1 ml) was added to a suspension of NaH (60% suspension in mineral oil, $8.1 \mathrm{mg}, 0.20$ mmol) in dimethoxyethane (0.5 ml), and the mixture was stirred at r.t. for 3 h . Addition of allyl bromide ($0.12 \mathrm{ml}, 1.4 \mathrm{mmol}$), stirring for 4 h , workup, and chromatography on Florisil (hexane $/ \mathrm{Et}_{2} \mathrm{O} 15: 1$) provided 2 ($22 \mathrm{mg}, 46 \%$) as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right): 2960,2930,2860$, $1730,1640,1470,1460,1410,1350,1335,1290$, 1260, $1110,1010,925,870,835 .^{\text {' }} \mathrm{H}-\mathrm{NMR}: 0.08$ $(s, 3 \mathrm{H}) ; 0.10(s, 3 \mathrm{H}) ; 0.91(s, 9 \mathrm{H}) ; 0.94(s, 3 \mathrm{H})$; 0.99 ($s, 3 \mathrm{H}$); 1.02 ($d d, J=13,2,1 \mathrm{H}$); $1.10(s, 3$ $\mathrm{H}) ; 1.89(d d, J=13,8.5,1 \mathrm{H}) ; 1.94(d d, J=19,4.5$, $1 \mathrm{H}) ; 2.11(d d t, J=13,7.5,1,1 \mathrm{H}) ; 2.19(d d t, J=$ $13.5,7.5,1,1 \mathrm{H}) ; 2.53(d d, J=10.5,7.5,1 \mathrm{H})$; $2.57(d d, J=19,10.5,1 \mathrm{H}) ; 2.66-2.77(1 \mathrm{H}) ; 3.65$ $(d, J=7.5,1 \mathrm{H}) ; 5.01-5.10(2 \mathrm{H}) ; 5.67(d d t, J=$ $17,10,7.5,1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}:-4.19(q) ;-2.74(q)$; $18.49(s) ; 18.90(q) ; 21.04(q) ; 26.22(q) ; 27.15$ $(q) ; 30.38(d) ; 42.97(s) ; 43.49(t) ; 45.68(t) ; 47.41$
$(t) ; 51.05(s) ; 55.63(d) ; 82.88(d) ; 118.49(t) ;$ $133.51(d) ; 222.89(s) . \mathrm{MS}: 319\left(1.1,\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}\right.\right.$ -17]+), 279 (12), 237 (4.4), 187 (5.0), 107 (16), 95 (14), 93 (13), 75 (100), 73 (54), 59 (13), 57 (17), 55 (15).

Received: January 21, 1992
[1] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, 'Principles and Applications of Organotransition Metal Chemistry', University Science Books, Mill Valley, CA, 1987; W.A. Herrmann, Kontakte (Darmstadt) 1991, 22.
[2] Reviews: a) W. Oppolzer, Angew. Chem. 1989, 101, 39; ibid. Int. Ed. 1989, 28, 38; b) W. Oppolzer, Pure Appl. Chem. 1990, 62, 1941.
[3] W. Oppolzer, J.-Z. Xu, C. Stone, Helv. Chim. Acta 1991, 74, 465.
[4] W. Oppolzer, H. Bienaymé, A. GenevoisBorella, J. Am. Chem. Soc. 1991, /13, 9660.
[5] R. Keese, R. Guidetti-Grept, B. Herzog, Tetrahedron Lett. 1992, 33, 1207.
[6] a) T. Takeuchi, H. Iinuma, J. Iwanaga, S. Takahashi, T. Takita, H. Umezawa, J. Antibiot. 1969, 22, 215; b) S. Takahashi, H. Naganawa, H. Iinuma, T. Takita, K. Maeda, H. Umezawa, Tetrahedron Lett. 1971, 1955; c) H. Nakamura, T. Takita, H. Umezawa, M. Kunishita, Y. Nakayama, Y. Iitaka, J. Antibiot. 1974, 27, 301.
[7] a) S. Danishefsky, R. Zamboni, M. Kahn, S. J. Etheredge, J. Am. Chem. Soc. 1981, 103, 3460 ; b) B. M. Trost, D. P. Curran, ibid. 1981, 103, 7380; c) K. Iseki, M. Yamazaki, M. Shibasaki, S. Ikegami, Terrahedron 1981, 37, 4411 ; d) P. A. Wender, J. J. Howbert, Tetrahedron Lett. 1983, 24, 5325; e) C. Exon, P. Magnus, J. Am. Chem. Soc. 1983, I05, 2477; P. Magnus, C. Exon, P. Albaugh-Robertson, Tetrahedron 1985,41, 5861 ; f) M. Koreeda, S. G. Mislankar, J. Am. Chem. Soc. 1983, 105, 7203; g) T. Ito, N. Tomiyoshi, K. Nakamura, S. Azuma, M. Izawa, F. Maruyama, M. Yanagiya, H. Shirahama, T. Matsumoto, Tetrahedron 1984, 40, 241; h) P. F. Schuda, M. R. Heimann, ibid 1984, 40, 2365; i) R. L. Funk, G. L. Bolton, J. U. Daggett, M. M. Hansen, L. H. M. Horcher, ibid. 1985, 4 I, 3479 ; j) M. Demuth, P. Ritterskamp, E. Weigt, K. Schaffner, J. Am. Chem. Soc. 1986, 108,4149 ; k) G. Mehta, A. N. Murthy, D. S. Reddy, A. V. Reddy, ibid. 1986, 108 , 3443; I) L. Van Hijfte, R. D. Little, J. L. Petersen, K. D. Moeller, J. Org. Chem. 1987, 52, 4647.
[8] W. Oppolzer, T. H. Keller, D. L. Kuo, W. Pachinger, Tetrahedron Lett. 1990, 31, 1265.
[9] S. E. Denmark, T. K. Jones, J. Org. Chem. 1982, 47, 4595.
[10] T. M. G. Carneiro, J. Dupont, M. Luke, D. Matt, Quimica Nova 1988, 11, 215.
[11] D. H. R. Barton, D. Crich, W. B. Motherwell, Tetrahedron 1985, 41, 3901 ; D. H. R. Barton, Y. Hervé, P. Potier, J. Thierry, Tetrahedron 1988, 44, 5479.
[12] W. Oppolzer, R. N. Radinov, Tetrahedron Lett. 1991, 32, 5777.

[^0]: [1] A.B. Smith, B.H.Toder, S.J. Branca, J.Am. Chem. Soc. 1984, 106, 3995.
 [2] A.B. Smith, B.H. Toder, R.E. Richmond, S.J. Branca, J. Am. Chem. Soc. 1984, 106, 4009.
 [3] M.P. Doyle, R.J. Pieters, S.F. Matin, R.E. Austin, C.J. Oalmann, P. Müller, J. Am. Chem. Soc. 1991, 113, 1423.
 [4] D. Müller, G. Umbricht, B. Weber, A. Pfaltz, Helv. Chim. Acta 1991, 74, 232.
 [5] D.A.Evans, K.A. Woerpel, M.M. Hinman, M.M. Faul, J. Am. Chem. Soc. 1991, I/3, 726.
 [6] R.E. Lowenthal, A. Abiko, S. Masamune, Tetrahedron Lett. 1990, 3l, 6005.
 [7] J.P. Lockensgard, J. O'Dea, E.A. Hill, J. Org. Chem. 1974, 39, 3355.
 [8] S.J. Branca, R.L.Lock, A.B. Smith, J. Org. Chem. 1977, 42, 3165.
 [9] M.P. Doyle, private communication.
 [10] J.A. Dale, D.L. Hull, H.S. Mosher, J. Org. Chem. 1969, 34, 2543.
 [11] J.A. Dale, H.S. Mosher, J. Am. Chem. Soc. 1973, $95,512$.
 [12] M.N. Protopova, M.P. Doyle, D. Ene, P. Müller, J. Am. Chem. Soc. 1992, accepted for publication.
 [13] M.P. Doyle, A.vanOeveren, L.J. Westrum, M.N. Protopova, T.W. Clayton, J. Am. Chem. Soc. 1991, 113, 8982.

[^1]: *Correspondence: Prof. W. Oppolzer
 Département de Chimie Organique
 Université de Genève
 $\mathrm{CH}-1211$ Genève 4

[^2]: [1] A.B. Smith, B.H.Toder, S.J. Branca, J.Am. Chem. Soc. 1984, 106, 3995.
 [2] A.B. Smith, B.H. Toder, R.E. Richmond, S.J. Branca, J. Am. Chem. Soc. 1984, 106, 4009.
 [3] M.P. Doyle, R.J. Pieters, S.F. Matin, R.E. Austin, C.J. Oalmann, P. Müller, J. Am. Chem. Soc. 1991, 113, 1423.
 [4] D. Müller, G. Umbricht, B. Weber, A. Pfaltz, Helv. Chim. Acta 1991, 74, 232.
 [5] D.A.Evans, K.A. Woerpel, M.M. Hinman, M.M. Faul, J. Am. Chem. Soc. 1991, I/3, 726.
 [6] R.E. Lowenthal, A. Abiko, S. Masamune, Tetrahedron Lett. 1990, 3l, 6005.
 [7] J.P. Lockensgard, J. O'Dea, E.A. Hill, J. Org. Chem. 1974, 39, 3355.
 [8] S.J. Branca, R.L.Lock, A.B. Smith, J. Org. Chem. 1977, 42, 3165.
 [9] M.P. Doyle, private communication.
 [10] J.A. Dale, D.L. Hull, H.S. Mosher, J. Org. Chem. 1969, 34, 2543.
 [11] J.A. Dale, H.S. Mosher, J. Am. Chem. Soc. 1973, $95,512$.
 [12] M.N. Protopova, M.P. Doyle, D. Ene, P. Müller, J. Am. Chem. Soc. 1992, accepted for publication.
 [13] M.P. Doyle, A.vanOeveren, L.J. Westrum, M.N. Protopova, T.W. Clayton, J. Am. Chem. Soc. 1991, 113, 8982.

[^3]: *Correspondence: Prof. W. Oppolzer
 Département de Chimie Organique
 Université de Genève
 $\mathrm{CH}-1211$ Genève 4

