- [10] Note that the π -system of fulvenyl anion 1 as well as of fulvenyl radical 2 is considerably delocalized according to HMO calculations.
- [11] J. Hine, D.B. Knight, J. Org. Chem. 1970, 35, 3946; D.B. Knight, R.L. Hartless, D.A. Jarvis, *ibid.* 1972, 37, 688.
- [12] Oxidative coupling may be realized by adding anh. CuCl₂ to the cooled (-78°) solution of anion 1 as well. While product distribution is similar to that of *Table 1*, the

total anal. yield (determined by ¹H-NMR) drops to 68%.

- [13] Spectroscopic structure elucidation of compounds 3–7 will be discussed in a full paper (in preparation for *Helv. Chim. Acta*). Spectra of purified compounds are given in [1].
- [14] Tautomerizations of products with cyclopentadiene units (see 5–7) may occur at low temperature by base catalysis or, in many cases, at ambient temperature, by concerted 1,5-H shifts [9].

Chimia 46 (1992) 380–382 © Neue Schweizerische Chemische Gesellschaft ISSN 0009–4293

Synthese und Röntgenstruktur einer Triafulvalen-Vorstufe [1]

Peter Engel, Christoph Läng [2], Michel Mühlebach und Markus Neuenschwander*

Abstract. Triafulvalene precursors **3b** and **3c** have been synthesized by Cu^{II}-catalyzed 'carbene dimerization' of cyclopropyl carbenoids (obtained by halogen-lithium exchange of 1,1-dibromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropane (**2b**; see *Scheme 2*) in moderate yields. Diastereoselectivity of the central step **2b** \rightarrow **3b** is low. An X-ray analysis of the predominantly formed *trans-anti* isomer has been performed.

Einleitung

Triafulvalen (Bi(cyclopropenyliden); 1) ist als gespanntes cyklisch gekreuzt konjugiertes System sowohl bindungstheoretisch wie spektroskopisch von grossem Interesse. Bis heute sind weder der Grundkörper 1, noch einfache Derivate, oder aussichtsreiche Vorstufen von 1 bekannt. Wir berichteten kürzlich von einer präparativ sehr einfachen Umsetzung von 1,1-Dibromo-2-(phenylthio)cyclopropan (2a) zum Diastereoisomerengemisch der Bi(cyclopropylidene) 3a [3]. Dabei wurde das unter kinetischer Kontrolle aus 2a mit BuLi erzeugte Gemisch der 1-Bromo-1lithio-2-(phenylthio)cyclopropane mittels CuCl₂ in einer formalen 'Carben-Dimerisierung' zu 3a umgesetzt. Die präparativen Ausbeuten der Reaktion $2a \rightarrow 3a$ sind sehr stark von den Reaktionsbedingungen abhängig. Das Resultat ist deshalb überraschend, weil 'Hückel-Anionen' wie Cy-

*Korrespondenz: Prof. Dr. M. Neuenschwander Institut für organische Chemie Universität Bern Freiestrasse 3 CH-3012 Bern clopentadienid unter analogen Bedingungen oxidative Kupplungen zu 1,1'-Bi(cyclopentadienylen) eingehen [4][5].

Mit dieser einfachen Eintopf-Reaktion $2a \rightarrow 3a$ bietet sich erstmals die Möglichkeit, aussichtsreiche Vorstufen des Grundkörpers Triafulvalen (1) zu synthetisieren (*Schema 1*). Einerseits könnte versucht werden, die PhS-Gruppen von **3a** in gute Abgangsgruppen umzuwandeln, was nach unseren früheren Erfahrungen mit analogen Triafulven-Vorstufen nicht so einfach ist [6]. Andererseits wäre die Einführung zweier sich bei der geplanten Elimination unterstützender Abgangsgruppen attraktiv. Eine kürzlich erschienene Arbeit über die Synthese des instabilen Spiro-pentadiens [7] veranlasst uns, im folgenden kurz über die erfolgreiche Synthese von Bi(cyclopropylidenen) des Typs **3b** zu berichten.

[15] While HPLC allowed to separate tautom-

[16] Coupling at C(6) of 2 would produce a

energetically very unfavorable.

could not be separated.

standard for integration.

[17]

ers 5a and 5b, the mixture of tautomers 6

diradical and is, therefore, considered to be

An adequate portion of this oil was used for

NMR analysis at 300 MHz after adding a

balanced amount of MeNO2 as an internal

Synthese der Triafulvalen-Vorstufen 3b und 3c

trans-1,1-Dibromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropan (2b) ist weder nach Makosza [8] noch nach von Doering und Hoffmann [9] zugänglich und liess sich schliesslich aus dem entsprechenden Olefin nach Seyferth und Mitarbeitern [10] mittels (Tribromomethyl)(phenyl)quecksilber herstellen. Wird 2b zunächst bei -95° mit BuLi und dann mit EtOH behandelt, wird unter (Br-Li)-Austausch in über 70% Ausbeute das erwartete Gemisch zweier diastereoisomerer trans-1-Bromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropane isoliert [11]. Trotzdem ist die nachfolgende 'Carben-Dimerisierung', welche durch CuCl₂ katalysiert wird [3], sehr problematisch: Unter 'thermodynamischer Kontrolle' [12] liegen die maximalen Ausbeuten an 3b bei 2%. Sie steigen unter 'kinetischer Kontrolle' [12] auf 17%, falls katalytische Mengen (rund 0,1 mol-equiv.) CuCl₂ verwendet werden, und auf 21% (GC), falls 1 mol-equiv. CuCl₂ zugegeben wird. Im Gegensatz zu $2a \rightarrow 3a$ sinkt die Ausbeute der Umsetzung $2b \rightarrow 3b$, wenn anstelle von THF als Lösungsmittel Et₂O verwendet wird. Sonst sind die Ausbeuten in beiden Fällen von denselben Parametern abhängig (Details vgl. [3]), wobei vor

- [10] Note that the π -system of fulvenyl anion 1 as well as of fulvenyl radical 2 is considerably delocalized according to HMO calculations.
- [11] J. Hine, D.B. Knight, J. Org. Chem. 1970, 35, 3946; D.B. Knight, R.L. Hartless, D.A. Jarvis, *ibid.* 1972, 37, 688.
- [12] Oxidative coupling may be realized by adding anh. CuCl₂ to the cooled (-78°) solution of anion 1 as well. While product distribution is similar to that of *Table I*, the

total anal. yield (determined by ¹H-NMR) drops to 68%.

- [13] Spectroscopic structure elucidation of compounds 3–7 will be discussed in a full paper (in preparation for *Helv. Chim. Acta*). Spectra of purified compounds are given in [1].
- [14] Tautomerizations of products with cyclopentadiene units (see 5–7) may occur at low temperature by base catalysis or, in many cases, at ambient temperature, by concerted 1,5-H shifts [9].

Chimia 46 (1992) 380–382 © Neue Schweizerische Chemische Gesellschaft ISSN 0009–4293

- [15] While HPLC allowed to separate tautomers 5a and 5b, the mixture of tautomers 6 could not be separated.
- [16] Coupling at C(6) of 2 would produce a diradical and is, therefore, considered to be energetically very unfavorable.
- [17] An adequate portion of this oil was used for NMR analysis at 300 MHz after adding a balanced amount of MeNO₂ as an internal standard for integration.

Spiro-pentadiens [7] veranlasst uns, im folgenden kurz über die erfolgreiche Synthese von Bi(cyclopropylidenen) des Typs **3b** zu berichten.

Arbeit über die Synthese des instabilen

Synthese und Röntgenstruktur einer Triafulvalen-Vorstufe [1]

Peter Engel, Christoph Läng [2], Michel Mühlebach und Markus Neuenschwander*

Abstract. Triafulvalene precursors **3b** and **3c** have been synthesized by Cu^{II}-catalyzed 'carbene dimerization' of cyclopropyl carbenoids (obtained by halogen-lithium exchange of 1,1-dibromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropane (**2b**; see *Scheme 2*) in moderate yields. Diastereoselectivity of the central step **2b** \rightarrow **3b** is low. An X-ray analysis of the predominantly formed *trans-anti* isomer has been performed.

Schema 1

Einleitung

Triafulvalen (Bi(cyclopropenyliden); 1) ist als gespanntes cyklisch gekreuzt konjugiertes System sowohl bindungstheoretisch wie spektroskopisch von grossem Interesse. Bis heute sind weder der Grundkörper 1, noch einfache Derivate, oder aussichtsreiche Vorstufen von 1 bekannt. Wir berichteten kürzlich von einer präparativ sehr einfachen Umsetzung von 1,1-Dibromo-2-(phenylthio)cyclopropan (2a) zum Diastereoisomerengemisch der Bi(cyclopropylidene) 3a [3]. Dabei wurde das unter kinetischer Kontrolle aus 2a mit BuLi erzeugte Gemisch der 1-Bromo-1lithio-2-(phenylthio)cyclopropane mittels CuCl₂ in einer formalen 'Carben-Dimerisierung' zu 3a umgesetzt. Die präparativen Ausbeuten der Reaktion $2a \rightarrow 3a$ sind sehr stark von den Reaktionsbedingungen abhängig. Das Resultat ist deshalb überraschend, weil 'Hückel-Anionen' wie Cy-

*Korrespondenz: Prof. Dr. M. Neuenschwander Institut für organische Chemie Universität Bern Freiestrasse 3 CH-3012 Bern clopentadienid unter analogen Bedingungen oxidative Kupplungen zu 1,1'-Bi(cyclopentadienylen) eingehen [4][5].

Mit dieser einfachen Eintopf-Reaktion $2a \rightarrow 3a$ bietet sich erstmals die Möglichkeit, aussichtsreiche Vorstufen des Grundkörpers Triafulvalen (1) zu synthetisieren (*Schema 1*). Einerseits könnte versucht werden, die PhS-Gruppen von 3a in gute Abgangsgruppen umzuwandeln, was nach unseren früheren Erfahrungen mit analogen Triafulven-Vorstufen nicht so einfach ist [6]. Andererseits wäre die Einführung zweier sich bei der geplanten Elimination unterstützender Abgangsgruppen attraktiv. Eine kürzlich erschienene

Synthese der Triafulvalen-Vorstufen 3b und 3c

trans-1,1-Dibromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropan (2b) ist weder nach Makosza [8] noch nach von Doering und Hoffmann [9] zugänglich und liess sich schliesslich aus dem entsprechenden Olefin nach Seyferth und Mitarbeitern [10] mittels (Tribromomethyl)(phenyl)quecksilber herstellen. Wird 2b zunächst bei -95° mit BuLi und dann mit EtOH behandelt, wird unter (Br-Li)-Austausch in über 70% Ausbeute das erwartete Gemisch zweier diastereoisomerer trans-1-Bromo-2-(phenylthio)-3-(trimethylsilyl)cyclopropane isoliert [11]. Trotzdem ist die nachfolgende 'Carben-Dimerisierung', welche durch CuCl₂ katalysiert wird [3], sehr problematisch: Unter 'thermodynamischer Kontrolle' [12] liegen die maximalen Ausbeuten an 3b bei 2%. Sie steigen unter 'kinetischer Kontrolle' [12] auf 17%, falls katalytische Mengen (rund 0,1 mol-equiv.) CuCl₂ verwendet werden, und auf 21% (GC), falls 1 mol-equiv. CuCl₂ zugegeben wird. Im Gegensatz zu $2a \rightarrow 3a$ sinkt die Ausbeute der Umsetzung $2b \rightarrow 3b$, wenn anstelle von THF als Lösungsmittel Et₂O verwendet wird. Sonst sind die Ausbeuten in beiden Fällen von denselben Parametern abhängig (Details vgl. [3]), wobei vor

allem hohe Konzentrationen an 2 günstig sind. Ebenso ist die Diastereoselektivität des Kupplungsschrittes klein, indem laut ¹H-NMR-Untersuchungen alle vier diastereoisimeren 'Carben-Dimere' **3b** gebildet werden [13]. Immerhin wird ein Stereoisomer **3b** bevorzugt gebildet und lässt sich mittels HPLC und Kristallisation rein darstellen.

Die spektroskopischen Daten des isolierten 'Carben-Dimers' **3b** bestätigen bis auf die gegenseitige Anordnung der Substituenten dessen Struktur. So liegen im ¹³C-NMR-Spektrum (CDCl₃) alle Dreiring-C-Atome bei kleiner Frequenz (C(1): 115,4; C(2): 20,1; C(3): 20,3 ppm), und im ¹H-NMR-Spektrum erzeugen die Dreiring-Protonen aufgrund der ⁵J-Fernkopplungen über die zentrale (C=C)-Bindung ein *AA'XX'*-System. Ebenso passen im MS die Masse des Molekülions wie auch die Hauptfragmentierungen zur vorgeschlagenen Struktur.

Die Oxidation $2b \rightarrow 3c$ lässt sich mit guten Ausbeuten (rund 60%) mittels *m*-Chloroperbenzoesäure realisieren (*Schema 2*). Alle spektroskopischen Daten belegen die Struktur des Disulfons **3c**. Auch dessen ¹H-NMR-Spektrum zeigt das auffällige *AA'XX'*-System der Dreiring-Protonen, deren Aufspaltungsmuster durch ⁵J-Kopplungen über die zentrale (C=C)-Bindung kompliziert wird.

Unsere Ergebnisse zeigen, dass die kürzlich von uns gefundene Cu^{II}-katalysierte 'Carben-Dimerisierung' erfolgreich auf die Synthese aussichtsreicher Triafulvalen-Vorstufen des Typs 3b und 3c angewandt werden kann. Nachteilig ist einzig die überraschend schlechte Ausbeute des Dimerisierungsschrittes $2b \rightarrow 3b$, während die schlechte Diastereoselektivität im Hinblick auf die Synthese von 1 nicht stört. Bei Versuchen zur Fluorid-induzierten Eliminierung $3c \rightarrow 1$ konnte bisher in Gegenwart von Cyclopentadien kein Diels-Alder-Addukt von 1 isoliert werden; doch wurden die Experimente durch die geringen verfügbaren Mengen an 3b behindert und werden fortgesetzt. Schliesslich ist von Interesse, dass bei der Behandlung von 1,1-Dibromo-2-(phenylsulfonyl)-3-(trimethylsilyl)cyclopropan (2c) mit Bu₄NF bei -20° in Gegenwart von Cyclopentadien mit 72% Ausbeute der kristalline Tricyclus 5 isoliert werden kann (Schema 2). Damit wird belegt, dass in 2c das Br-Atom die bessere Abgangsgruppe ist als die PhS-Gruppe.

Röntgenstrukturanalyse des bevorzugt gebildeten Stereoisomers 3b

Zur Kristallzüchtung wurde eine gesättigte Lsg. von **3b** in Hexan/Et₂O 99:1 während 7 d auf 3° gekühlt. So konnten farblose Kristalle mit Schmp. 139–140° gewonnen werden.

Tabelle. Bindungslängen [Å] und Bindungswinkel [°] mit Standardabweichungen von 3b

Bindung ^a)	Bindungslänge	Bindungen ^a)	Bindungswinkel
C(1)-C(1')	1,31(1)	C(1')-C(1)-C(2)	146,8(1,5)
C(1)-C(2)	1,46(1)	C(1')-C(1)-C(3)	148,0(1,7)
C(1)-C(3)	1,48(1)	C(2)-C(1)-C(3)	64,9(0,9)
C(2)-C(3)	1,58(1)	C(1)-C(2)-C(3)	58,2(0,7)
C(2)-S	1,80(1)	C(1)-C(3)-C(2)	56,9(0,8)
C(3)-Si	1,86(1)	C(4)-S-C(2)	102,3(0,4)
C(4)-S	1,79(1)	C(5)-C(4)-C(9)	121,2(0,8)
C(4)-C(5)	1,38(2)	C(4)-C(5)-C(6)	120,2(1,1)
C(4)-C(9)	1,36(2)	C(5)-C(6)-C(7)	119,2(1,0)
C(5)-C(6)	1,39(2)	C(6)-C(7)-C(8)	120,4(0,8)
C(6)-C(7)	1,38(2)	C(7)-C(8)-C(9)	120,1(1,1)
C7)-C(8)	1,38(2)	C(4)-C(9)-C(8)	118,9(1,0)
C(8)-C(9)	1,41(2)		

a) Numerierung vgl. Schema 2.

Für die Röntgenstrukturanalyse wurde ein Kristall von ungefähr 0.3 x 0.3 x 0.3 mm präpariert. Erste Röntgenaufnahmen mit einer Weissenberg-Kamera und CuKa-Strahlung zeigten, dass die Kristalle orthorhombisch sind mit der Raumgruppe Pbcn. Die Bestimmung der Gitterparameter (a = 10,895(5); b = 10,697(5); c =21,97(1)Å) und die Intensitätsmessungen erfolgten mit einem Nonius CAD-4-Diffraktometer und MoK a-Strahlung bei RT. Die Zellparameter wurden nach der Methode der kleinsten Fehlerquadrate berechnet unter Berücksichtigung von 20 genau gemessenen Reflexen im Bereich 7,8° < $2\theta < 13.8^{\circ}$. Anschliessend wurden die Intensitäten von allen unabhängigen Reflexen im Bereich $1^{\circ} < 2\theta < 50^{\circ}$ gemessen. Jeweils nach 400 gemessenen Reflexen wurde die Orientierung des Kristalls überprüft und immer nach 3,8 h wurde die Intensität des (121)-Reflexes nachgemessen. Die gesamte Messung dauerte ca. 48 h. Insgesamt wurden 2595 Reflexe gemessen, davon 2248 unabhängige, von denen 737 als nichtbeobachtet vermerkt wurden. Die Intensitäten wurden für Lorentz- und Polarisationseffekte korrigiert. Die Kristallstruktur konnte mit Hilfe der direkten Phasenbestimmung ermittelt werden. Die Positionen der H-Atome wurden aufgrund der Bindungsgeometrie berechnet. Die Struktur wurde nach der Methode der kleinsten Fehlerquadrate verfeinert. Für die C-, S- und Si-Atome wurden anisotrope Temperaturfaktoren verwendet. Der abschliessende Gütefaktor beträgt R = 0,13 für die 1151 beobachteten Reflexe.

Die wichtigsten Daten der Molekülstruktur von 3b sind in der Tabelle und der Figur zusammengefasst. Wie erwartet liegen die C-Atome der Dreiringe in der Ebene der zentralen (C=C)-Bindung, welche mit 1,31 Å recht kurz ist. Typische Bindungslängen erhält man auch für die Dreiring-Bindungen. Dabei fällt auf, dass C(2)-C(3) mit 1,58 Å deutlich länger ist als die anderen Dreiring-Bindungen, ebenso dass der gegenüberliegende Dreiring-Winkel C(2)-C(1)-C(3) mit rund 65° deutlich grösser ist als die andern Dreiring-Winkel von 57° bzw. 58°. Vor allem zeigen die Röntgenstrukturdaten der Figur, dass die isolierte Verbindung eine trans-anti-Konfiguration aufweist, indem die beiden PhS-Gruppen (wie auch die beiden Me₃Si-Gruppen) bezüglich der (C=C)-Bindungsebene je in anti-Anordnung

Figur. Aufsicht und Seitenansicht von 3b

vorliegen. Offensichtlich ist bei der Cu^{II}-katalysierten 'Carben-Dimerisierung' $2b \rightarrow 3b$ das Diastereoisomere mit der energetisch günstigsten Konfiguration bevorzugt gebildet worden.

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 20-31217.91) für die Unterstützung der Arbeit. Eingegangen am 10. Juni 1992

- [1] Kurzmitteilung: 10. Mitteilung über Kupplungsreaktionen. 9. Mitteilung vgl. [4].
- [2] Teil der Diplomarbeit von Ch. L., Universität Bern, 1991.
- [3] M. Borer, T. Loosli, M. Neuenschwander,

Chimia 1991, 45, 382.

- [4] S. You, M. Neuenschwander, Chimia 1992, 46, 377.
- [5] A. Escher, W. Rutsch, M. Neuenschwander, *Helv. Chim. Acta* 1986, 69, 1644. Zur CuCl₂-induzierten Kupplung des aus Bi(cyclopentadienyl)methan erhaltenen Dianions vgl. K. Hafner, G.F. Thiele, *J. Am. Chem. Soc.* 1985, 107, 5526.
- [6] A. Weber, U. Stämpfli, M. Neuenschwander, *Helv. Chim. Acta* 1989, 72, 29.
- [7] W.E. Billups, M.M. Haley, J. Am. Chem. Soc. 1991, 113, 5084.
- [8] M. Makosza, in 'Modern Synthetic Methods 1976', Ed. R. Scheffold, Sauerländer, Aarau, 1976.
- [9] W. von E. Doering, A. Hoffmann, J. Am. Chem. Soc. 1954, 76, 6162.
- [10] D. Seyferth, J.M. Burlitch, R. Minasz, J. Yick-Pui Mui, H. Simmons, A. Treiber, S. Dowd, J. Am. Chem. Soc. 1965, 87, 4259.
- [11] Die Anordnung der Substituenten der Protonierungsprodukte geht aus den ¹H-NMR-Spektren hervor und wird durch NOE-Experimente bestätigt.
- [12] 'Thermodynamische Kontrolle' heisst: Zunächst wird 2b bei -95° mit BuLi umgesetzt, dann zur Äquilibrierung während 30 min bei -95° gerührt und erst dann bei -95° mit CuCl₂ versetzt. 'Kinetische Kontrolle' heisst: 2b wird bei -95° mit CuCl₂ versetzt, anschliessend tropft man bei -95° allmählich BuLi zu. Auf diese Weise wird das primär gebildete Carbenoid rasch umgesetzt.
- [13] Dies spielt im Hinblick auf die Synthese von 1 keine Rolle, so dass die Diastereoisomerengemische nicht getrennt werden müssen!

Chimia 46 (1992) 382–386 © Neue Schweizerische Chemische Gesellschaft ISSN 0009–4293

Triafulven- und Calicen-Vorstufen für *retro-Diels-Alder* Reaktionen [1]

Michel Mühlebach [2] und Markus Neuenschwander*

Abstract. An attractive concept for the synthesis of triafulvene (1) and calicene (2) by *retro-Diels-Alder* reaction (*RDA* reaction) of precursors 3 and 4 is presented. Precursors 3 and 4 are easily available in three steps starting with dibenzobarrelene (5). First thermal-fragmentation experiments are summarized.

Einleitung

Seit rund 25 Jahren wird in verschiedenen Laboratorien versucht, die einfachsten Vertreter der Klasse der Fulvene und Fulvalene, Triafulven (1) und Pentatriafulvalen (2, Calicen) zu isolieren. Zahlreiche sterisch und elektronisch stabilisierte Triafulvene und Calicene wurden synthetisiert, jedoch konnte der Grundkörper 1 erst vor wenigen Jahren spektroskopisch nachgewiesen werden [3][4], während Calicen (2) bis heute unbekannt ist. Die Schwierigkeiten bei der Synthese von 1 und 2 sind nicht nur auf ihre geringe thermische Stabilität zurückzuführen. Sie beruhen auch darauf, dass sich viele Verfahren zur Herstellung substituierter Triafulvene und Calicene nicht auf die Grundkörper übertragen lassen. So ergibt das vermutlich beste Verfahren, nämlich die Kupplung von Cyclopentadienid mit substituierten Cyclopropenylium-Kationen, wohl Calicene mit potentiellen Abgangsgruppen am Dreiring, doch führt die Abspaltung dieser Substituenten unter Dimerisierung zur Bildung von Bicalicen [5].

Ein grundsätzlich anderer Synthese-Plan für 1 und 2 geht von den bisher unbekannten *retro-Diels-Alder*-Vorstufen des Typs 3 und 4 (*Schema 1*) aus, welche möglicherweise ausgehend von Dibenzobarrelen (5) zugänglich sein könnten. Er basiert auf der plausiblen Annahme, dass die Energie-Bilanz der *Retro-Diels-Alder* Reaktion (*RDA*-Reaktion) von 3 und 4 dadurch akzeptabel ausfällt, dass

*Korrespondenz: Prof. Dr. M. Neuenschwander Institut für organische Chemie Universität Bern Freiestrasse 3 CH-3012 Bern

CHIMIA 46 (1992) Nr. 9 (September)