Chimia 47 (1993) 196–198	
© Neue Schweizerische Chemische Gesellschaft	
ISSN 0009-4293	

Fixierung von Sulfonsäurehydraziden an dreikernigen Ruthenium-Clustern: Synthese und Struktur von $(\mu_2$ -H)Ru₃(CO)₉[μ_3 - η^2 -H₂N-NS(O)₂Mes]

Gerd Rheinwald, Helen Stoeckli-Evans und Georg Süss-Fink*

Abstract. Sulfonic hydrazides were found to react thermally with $Ru_3(CO)_{12}$ without cleavage of the N–N bond resulting in the formation of trinuclear hydrazido clusters. The X-ray structure analysis of the derivative $(\mu_2$ -H)Ru_3(CO)_9[μ_3 - η^2 -H₂NNS(O)₂Mes] shows a triangular Ru₃ framework capped by an intact N–N unit.

Einleitung

Bei der Umsetzung von $Ru_3(CO)_{12}$ mit stickstoffhaltigen Substraten wird häufig ein Abbau des Metallgerüsts zu ein- und zweikernigen Ruthenium-Komplexen beobachtet [1]. Im Gegensatz dazu haben wir gefunden, dass Hydrazin und seine organischen Derivate $RHNNH_2$ (R = H, $Ph, p-MeOC_6H_4$) zu Dreikern-Clustern des Typs $(\mu_2$ -H)Ru₃(CO)₉[μ_3 - η^2 -HNNHR] führen; die Röntgenstrukturanalyse des Grundkörpers (R = H) zeigt, dass das Hydrazido-Fragment mit intaktem N-N-Rückgrat als tripodaler η^2 -Ligand an das Ru₃-Grüst koordiniert ist [2]. In der vorliegenden Arbeit berichten wir über die Fixierung von Sulfonsäure-hydraziden an einen dreikernigen Ruthenium-Verband.

Ergebnisse und Diskussion

Dodecacarbonyltriruthenium reagiert in siedendem THF mit Sulfonsäure-hydraziden zu den Verbindungen (μ_2 -H)-Ru₃(CO)₉[μ_3 - η^2 -H₂NNS(O)₂R] (1: R = Ph, 2: R = Tol; 3: R = Mes). Im Druckschlenkrohr lässt sich bei erhöhter Reaktionstemperatur (110°) die Ausbeute an 1-3 auf 80–90% steigern.

*Korrespondenz: Prof. Dr. G. Süss-Fink Institut de Chimie Université de Neuchâtel Avenue de Bellevaux 51 CH-2000 Neuchâtel

$Ru_3(CO)_1$	₂ +	RSO	NHNH,	\rightarrow		
$HRu_3(CO)_9[H_2NNS(O)_2R] + 3 CO$						
	1	2	3			
R	Ph	Tol	Mes			

Nach dünnschichtchromatographischer Reinigung fallen die Substanzen als gelbe, mässig luftempfindliche Feststoffe an. Das IR-Spektrum zeigt für 1–3 das für das Ru₃(CO)₉-Gerüst charakteristische v(CO)-Absorptionsmuster; die NH₂- und SO₂-Gruppierungen in 1–3 geben sich durch je zwei typische Schwingungen im v(NH)- bzw. v(SO)-Bereich zu erkennen. Im ¹H-NMR-Spektrum von 1–3 werden ausser den Resonanzen des jeweiligen Substituenten R das Signal der Protonen der NH₂-Gruppierung, sowie das Signal der Hydrid-Brücke beobachtet (*Tab. 1*).

Die Molekülstruktur von **3** konnte durch eine Röntgenstrukturanalyse eines Einkristalls gelöst werden, welcher aus einer CH₂Cl₂-Lösung durch Überschichten mit Hexan erhalten worden war. Das Ergebnis zeigt ein ungleichseitiges Ru₃-Dreieck mit einer μ_3 - η^2 -Hydrazidokappe,

Fig. 1. SCHAKAL-Plot von 3

Tab.	1. IR-	und	'H-NMR ^a)	Daten de	er Ve	erbind	lungen 1	l-3	
------	--------	-----	-----------------------	----------	-------	--------	----------	-----	--

	v(CO) ^b)	v(NH) ^c)	v(SO)°)	ð(CH)	δ(NH)	$\delta(\mathrm{Ru}_{2}\mathrm{H})$
1	2091m, 2064s, 2041vs,	3296w	1341 <i>m</i>	7.80m (3 H), 7.68 t (2 H, J(H,H): 7,6 Hz)	4.11s (2 H)	-13.07s (1 H)
	2011s, 2001s, 1967m	3232w	1150w			
2	2091m, 2064s, 2040vs	3295w	1341 <i>m</i>	7.66 <i>d</i> (2 H, <i>J</i> (H,H): 7,9 Hz)	4.09s (2 H)	-13.10s (1 H)
	2011s, 2000s, 1967m	3231w	1148w	7.44 <i>d</i> (2 H, <i>J</i> (H,H): 8,1 Hz), 2.48 <i>s</i> (3 H)		
3	2090m, 2062s, 2039vs	3293w	1345m	7.06s (2 H 2.65s (6 H), 2.34s (3 H),	3.89s (2 H)	-12.82s (1 H)
	2009s, 1999(sh), 1967m	3230w	1162w			

Tab. 2. Wichtige Bindungsabstände und -winkel in 3 (Molekül A)

^a) In CDCl₃, 26°, ppm. ^b) in CH₂Cl₂-Lösung cm⁻¹. ^c) KBr-Pressling, cm⁻¹.

neun terminalen Carbonyl-Liganden, sowie einer μ_2 -Hydrid-Brücke (*Fig. 1*). Die asymmetrische Einheit der Elementarzelle enthält zwei unabhängige Moleküle, die sich aber nur in der Orientierung des Sulfonsäure-Restes in Bezug auf den Hydrid-Liganden unterscheiden. Die Ru-Ru-Abstände liegen mit 2.7-2.9 Å im Erwartungsbereich von (Ru-Ru)-Bindungen (Tab. 2). Das verbrückende Hydrid liegt nahezu symmetrisch zwischen Ru(1) und Ru(2). Der Abstand des Stickstoffatoms N(1) zu Ru(1) beträgt 2.149(4) Å während die Abstände des verbrückenden N-Atoms N(2) zu den Ru-Atomen Ru(2) und Ru(3) 2.177(4) Å bzw. 2.144(4) Å betragen; die Ru(2)-N(2)-Ru(3)-Brücke ist also deutlich unsymmetrisch. Die Bindungsabstände N(1)-N(2) und N(2)-S(1) liegen mit 1.472(5) Å bzw. 1.708(4) Å im üblichen Bereich für N-N bzw. N-S-Bindungen.

Im Vergleich zu den von uns früher beschriebenen Hydrazidoclustern (μ_2 -H)Ru₃(CO)₉[μ_3 - η_2 -HNNHR] (R = H, Ph, p-MeO-C₆H₄) [2] sind in den neuen Derivaten 1-3 die Hydrazido-Fragmente anders angeordnet (Fig. 2). In 1-3 liegt eine NH2-Gruppierung vor, die terminal an Ru(1) koordiniert ist, das die Sulfoxyl-Gruppe tragende N-Atom ist verbrückend an Ru(2) und Ru(3) gebunden. Dagegen sind in den schwefelfreien Hydrazid-Komplexen die beiden H-Atome der Hydrazido-Gruppierung an zwei N-Atome gebunden, das den Substituenten R tragende N-Atom ist terminal koordiniert. Ein weiterer Strukturunterschied liegt in der Position der Hydrid-Brücke in Bezug auf die Ru-N-Ru-Brücke beider Systeme. Eine ähnliche Koordination wie in 1-3 wurde bisher nur bei dem aus Diethyldiimin und Ru3(CO)12 zugänglichen Cluster $(\mu_2$ -H)Ru₃(CO)₉[μ_3 - η_2 -EtNNHEt] von Vahrenkamp und Mitarbeitern beobachtet [3].

Experimenteller Teil

Alle Arbeiten wurden unter Schutzgas in getrockneten und mit N_2 gesättigten Lsgm. durchgeführt. Die Sulfonsäure-hydrazine waren käuf-

Ru(1)-Ru(2)	2.911(1)	Ru(2)–HRu	1.79(4)
Ru(1)–Ru(3)	2.740(1)	Ru(3)–N(2)	2.144(4)
Ru(1)–N(1)	2.149(4)	S(1)-O(1)	1.448(5)
Ru(1)–HRu	1.85(4)	S(1)-O(2)	1.419(4)
Ru(2)-Ru(3)	2.654(1)	S(1)-N(2)	1.708(4)
Ru(2)–N(2)	2.178(4)	N(1)-N(2)	1.472(5)
Ru(2)-Ru(1)-Ru(3)	55.9(2)	Ru(1)-Ru(3)-N(2)	68.5(1)
Ru(2)-Ru(1)-N(1)	69.5(1)	Ru(2)-Ru(3)-N(2)	52.7(1)
Ru(2)-Ru(1)-HRu	36.1(1)	O(1)-S(1)-O(2)	119.8(3)
Ru(3)-Ru(1)-N(1)	72.5(1)	O(1)-S(1)-N(2)	106.8(2)
Ru(3)-Ru(1)-HRu	91.7(1)	O(2)-S(1)-N(2)	105.0(2)
N(1)-Ru(1)-HRu	83.1(1)	Ru(1)-N(1)-N(2)	99.2(3)
Ru(1)-Ru(2)-Ru(3)	58.8(2)	Ru(2)-N(2)-Ru(3)	75.8(1)
Ru(1)-Ru(2)-N(2)	64.7(1)	Ru(2)-N(2)-S(1)	119.6(2)
Ru(1)-Ru(2)-HRu	37.7(1)	Ru(2)-N(2)-N(1)	106.4(3)
Ru(2)-Ru(2)-N(2)	51.5(1)	Ru(3)–N(2)–S(1)	132.7(2)
Ru(3)-Ru(2)-HRu	96.1(1)	Ru(3)–N(2)–N(1)	106.7(3)
N(2)-Ru(2)-HRu	91.2(1)	S(1)-N(2)-N(1)	109.9(3)
Ru(1)-Ru3-Ru(2)	65.3(2)	Ru(1)-HRu-Ru(2)	106.2(2)

Fig. 2. Strukturvergleich der neuen Hydrazido-Cluster $(\mu_2-H)Ru_3(CO)_g[\mu_3-\eta^2-H_2NNS(O)_2R]$ (1-3) mit den bekannten Komplexen $(\mu_2-H)Ru_3(CO)_g[\mu_3-\eta^2-HNNHR]$ [2]

liche Produkte und wurden ohne weitere Reinigung eingesetzt. Zur präp. DC wurden 20 × 20 cm grossen Platten, die mit *Macherey-Nagel* MN-Kieselgel G beschichtet waren, benutzt. IR-Spektren: *Perkin Elmer* FT-IR 1720; ¹H-NMR: *Bruker AMX 400*. Die Elementaranalysen wurden von dem Mikroelementaranalytischen Laboratorium der ETH-Zürich durchgeführt. Synthese der Komplexe 1–3. Eine Lsg. von $0.16 \text{ mmol} (100 \text{ mg}) \text{Ru}_3(\text{CO})_{12} \text{ und } 0.16 \text{ mmol} (1: 27 \text{ mg}, 2: 30 \text{ mg}, 3: 34 \text{ mg}) des jeweiligen Sulfonsäure-hydrazids in$ *ca*. 25 ml THF wird bei 110° für 4 h im Druckschlenk erhitzt. Nach Abziehen des Lsgm. wird der Rückstand in wenig CH₂Cl₂ aufgenommen und mit CH₂Cl₂/Cyclohexan 3:1 dünnschicht-chromatographisch gereinigt. Die

Substanzen werden mit THF extrahiert und aus $CH_2Cl_2/Hexan$ kristallisiert und i. HV. getrocknet.

1: Gelbe Nadeln; Ausbeute 102 mg (90%). Anal. ber. für $C_{15}H_8N_2O_{11}Ru_3S$: C 24.67, H 1.10, N 3.84; gef.: C 25.05, H 1.15, N 3.73.

2: Gelbe Nadeln; Ausbeute 93 mg (80%). Anal. ber. für $C_{16}H_{19}N_2O_{11}Ru_3S$: C 25.92, H 1.36, N 3.78; gef.: C 26.21, H 1.60, N 3.71.

3: Gelb-orange Quader; Ausbeute 100 mg (83%). Anal. ber. für $C_{18}H_{14}N2O_{11}Ru_3S$: C28.09, H 1.83, N 3.64; gef.: C 28.12, H 1.81, N 3.53.

Röntgenstrukturanalyse von 1.

 $C_{18}H_{14}N_2O_{11}Ru_3S$, $M_r = 769.6$, Kristallgrösse 0.72 × 0.38 × 0.19 mm, Monoklin, $P2_1/c$, a = 16.338(1), b = 15.298(2), c = 20.140(2) Å, $\beta = 90.196(8)$, V = 5033.7(9) Å3, Z = 8, Dc = 2.031 g·cm⁻³, $\lambda = 0.71073$ Å, $\mu = 0.99$ mm⁻¹, F(000) = 2944.8858 unabhängige Reflexe, 6862 beobachtete [$I > 2.5\sigma(I)$], R = 0.041, $R_w = 0.061$, k = 0.002, S = 1.23 Max Shift/sigma Verhältnis 0.20, Restelktronendichte ($e/Å^3$) max. 0.78, min -2.23 nahe Ru(2A).

Die Daten wurden auf einem Stoe AED2 Vierkreisdiffraktometer (MoK_{α} -Strahlung, Graphitmonochromator) bei RT. im ω/Θ Betrieb aufgenommen. Drei Standards wurden jede h gemessen, eine Intensitätsabweichung von 9% wurde korrigiert. Es wurde keine Absorptionskorrektur vorgenommen. Die Struktur wurde durch direkte Methoden mit SHELXS-86 [4] gelöst. Alle weiteren Berechnungen wurden mit Hilfe von NRCVAX [5] durchgeführt. Die Atomformfaktoren in NRCVAX [5] wurden aus [6] entnommen. Es sind zwei unabhängige Moleküle in einer asymmetrischen Einheit; es wurde keine zusätzlich Symmetrie mit der Routine MISSYM in NRCVAX [5] gefunden. Die H-Atome wurden in ihre berechneten Positionen eingesetzt und nach jedem dritten Verfeinerungszyklus erneuert. Die Hydride wurden der Differenzliste entnommen, zuerst verfeinert und dann fixiert (U_{iso} = 0.075 Å^2). Die Nicht-H-Atome wurden nach der Methode eines gewichteten voll-matrix blockdiagonal least-square Algorithmus anisotrop verfeinert ($w = 1/[\sigma^2(F_0) + k(F_0^2)]$). Atomparameter und die kompletten Tabellen rnit Bindungsabständen und Bindungswinkel wurden beim Cambridge Crystallographic Data Centre, Union Road, Cambridge CB2 IEZ, England, hinterlegt. Fig. 1 [7] zeigt das verwendete Nummerierungsschema.

Wir danken dem Schweizerischen Nationalfond zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung dieser Arbeit. Dem Johnson Matthey Technology Centre danken wir für die Überlassung von Ruthenium(III)-chlorid-hydrat.

Eingegangen am 9. März 1993

a) F. Calderazzo, C. Floriani, F. L'Éplattenier, J. Organomet. Chem. 1969, 352, 1378; b) R.L. Bennet, M.I. Bruce, B.L. Goodall, M.Z. Iqbal, F.G.A. Stone, J. Chem. Soc., Dalton Trans. 1972, 1787; c) L.H. Stall, L.H. Polm, R.W. Balk, G. van Koten, K. Vrieze, A.M.F. Brouwers, Inorg. Chem. 1980, 19, 3343; d) L.H. Staal, L.H. Polm, K. Vrieze, F. Ploeger, C.H. Stam, J. Organo-

met. Chem. **1980**, 199, C13; e) J.A. Cabeza, L.A. Oro, A. Tiripicchio, M. Tiripicchio-Camellini, *J. Chem. Soc., Dalton Trans.* **1988**, 1437; f) F. Neumann, G. Süss-Fink, *J. Organomet. Chem.* **1989**, 367, 175; g) R. Szostak, C.E. Strouse, H.D. Kaesz, *J. Organomet. Chem.* **1980**, 191, 243; h) G. Süss-Fink, T. Jenke, H. Heitz, M.A.Pellhinghelli, A. Tiripicchio, *ibid.* **1989**, 379, 311; i) E. Sappa, L. Milone; *ibid.* **1973**, 61, 383.

- [2] T. Jenke, H. Stoeckli-Evans, G.Süss-Fink, J. Organomet. Chem. 1992, 391, 395.
- [3] a) E.J. Wucherer, H. Vahrenkamp, Angew. Chem. 1987, 99, 353; b) E.J. Wucherer, M. Tasi, B. Hansert, A.K. Powell, M.-T. Garland, J.-F. Halet, J.-Y. Saillard, H. Vahrenkamp, Inorg. Chem. 1989, 28, 3564; c) B. Hansert, M. Tasi, A. Tiripicchio-Camellini, H. Vahrenkamp, Organometallics 1991, 10, 4070; d) B. Hansert, A.K. Powell, H. Vahrenkamp, Chem. Ber. 1991, 124, 2697.
- [4] G.M. Sheldrick, 'SHELXS-86, Program for Crystal Structure Determination', Universität Gottingen, FRG, 1986.
- [5] E.J. Gabe, Y. Le Page, J.-P. Charland, F.L. Lee, P.S. White 'NRCVAX-An interactive Program System for StructureAnalysis', J. Appl. Crystallogr. 1989, 22, 384.
- [6] 'International Tables for X-Ray Crystallography', 1974, Vol. IV, Kynoch Press, Birmingham, England (Present distributor Kluwer Academic Publishers, Dordrecht).
- [7] E. Keller, 'SCHAKAL 88B/V16, A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models', Kristallographisches Institut der Universität Freiburg, FRG, 1990.

Chimia 47 (1993) 198–202 © Neue Schweizerische Chemische Gesellschaft ISSN 0009–4293

The Crystal and Molecular Structures of 2,5-Bis(2'-pyridyl)pyrazine (BPPZ) and Some 3^d Transition-Metal Complexes

Antonia Neels and Helen Stoeckli-Evans*

Abstract. The symmetrical ligand 2,5-bis(2'-pyridyl)pyrazine (BPPZ) exists in the extended form with a dihedral angle between the pyrazine and the pyridine rings of 7.88°. BPPZ forms symmetrical bis(bidenate) complexes with Mn^{II} , Fe^{II}, and Cu^{II}. The dihedral angles between the best planes through the planar pyrazine ring and the pyridine ring are 2.6° in the Mn^{II} complex, 4° in the Fe^{II} complex, and 8.5° in the Cu^{II} complex. The metal– N_{py} bond distances are shorter than standard values and similar in length to the metal– N_{pz} distances.

Introduction

Ligands that can serve as molecular bridges between metal centers and that also contain a delocalized π system have received considerable attention in recent years. Binuclear and multinuclear metal complexes comprising two or more metal centers bridged by multidentate ligands can exhibit metal-metal interactions, such as energy or electron transfer, magnetic coupling and intervalence transfer [1][2].

Coordination complexes of BPPZ were unknown until recently when the photochemistry of some group VIB tetracarbonyl complexes were studied [3]. A little later *Balzani* and coworkers [4–6], *Denti*

**Correspondence*: Prof. H. Stoeckli-Evans Institut de Chimie Université de Neuchâtel Avenue de Bellevaux 51 CH-2000 Neuchâtel