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The frontier JQ'~'of each electrode Q'~', I

are of the following three types:
rtJv: part of JQ'i' in contact with

an insulator.
r7b (V): part of dQ';' at a fixed poten-

tial Vi'
JiB v: part of dQ',1I in contact with

the electrolyte.
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Abstract. We explain the principles of a software able to compute electrical potentials
and currents in electrochemical plane systems, composed of electrodes, electrolytes,
and insulators. At interfaces electrodes-electrolytes, the relationship between the
potential jump and the crossing current is modeled by any nondecreasing function
(called generalized Butler-Volmer function, Eqn. ].2). This takes in account the
thermodynamical barriers, oxydations, reductions, and diffusion limitations.
The conductivity of the different environments can be constant or variable. We give
three formulations of the problem to solve (Eqns. 2 and 3), then (Eqn. 4), we show the
finite element discretization. This yields to a nonlinear equations system that we
discuss. Furthermore, we describe an original method to determinefloating potentials
of electrodes (Eqn. 8). Examples are choosen to show the possibilities of softwares and
methods. These examples are relatively simple, but we are able to compute more
complex configurations.

The frontier drY; of the electrolyte Qt'
are of the following two types:

r~: part of dQ" in contact with
an insulator.

riB v: part of dQe in contact with
the electrode Q':.'

All the considered frontiers are either
empty, either of non-null length.

1.2. Physics
Suppose that all phenomena are sta-

tionary. All time-derivatives variables are
null (arO = 0). Ohm's law gives the rela-
tionship between the electrical current
density i and the electrical field E;: i = aE;,
where a is the electrical conductivity of
the environment (amay be variable).

Let Q'~, Q;', Q;', ... Q;;'", the domains
occupied by the nm electrodes. The do-
mains Qe and Q;n (i = 1, 2, 3, ... , nm) are
related. (Fig. 1).

A bipolar electrochemical reactor is a
system composed of electrodes (metal,
good electrical conductor), electrolyte (liq-
uid, middle conductor) in which electrodes
and insulators are immersed. We put two
electrodes to different potentials. We want
to compute the potential and the electrical
current distribution in all the system.

1. Introduction, General Points

1.1. Geometry
Q is the bounded domain of IR2 or IR3

occupied by the system. Suppose that we
have only one electrolyte Qe. Qm is the
domain occupied by the electrodes. We
have

electrolyte ge
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Fig. 1. Typical geometric con-
figuration
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Knowing that the electrical field de-
rives from the potentiall/J,.E =-grad l/J, we
obtain : i= -(J grad l/J.

Then the conservation law of the elec-
trical current, here, diveD = 0 gives:

2. Differential Formulation of the
Problem

In each electrode Q':l the electrical
I,

potentiall/J;n is solution of the problem:

a": electrical conductivity of the elec-
trolyte, it is a continuous, differenti-
able function defined on Qe.

r~ is the part of the border of the elec-
trode that the current do not cross.

dil'(-(J grad CP) = 0 (1.1)

div (ui grg;i ~r) o inn~
1

i = 1 2 ... nm

(_.1)

o on fiBV

onITItod<p~
I

dv

Suppose that equation gives the poten-
tial distribution in the electrodes and elec-
trolyte. Dirichlet boundary condition gives
no particular problem. To describe the
others boundary conditions or interfaces
electrodes-electrolyte conditions, we adopt
the following conditions:

a) Electrolyte-Insulator or Metal-In-
sulator frontiers (Fig. 2)

.E: normal to the frontier pointed to the
insulator; II.E II = 1.

The current does not cross the frontier
is expressed by:

~~ =< illL >=< -u.cui<P(P)IlL >;::: 0

IIYU=!
electrolyte
~e, if

metal
or

electrolyte

Fig. 3, Electrolyte-metal inteiface

Fig. 2. Electrolyte-insulating material-insulat-
ing material interface

1.2)

( 1.4)

riBV

nm is the total number of electrodes.
(Jt: electrical conductivity oftheelec-

trode i.
is a continuous, differentiable
function defined on Q'i~
is the part of the border of the
electrode i that the current do not
cross.

r;']; (V) is the part of the border of the
electrode iat a fixed potential Vi'
is the part of the border of the
electrode i in contact with the
electrolyte and where a general-
ized Butler- Volmer condition is
gIven,

r",
iN

In the electrolyte Qe, the electrical
potentiall/Je is solution of the problem:

(I. )i= cp ( cP'" _ cpt')

(J' < l!rad cPr I!!> + cp (4)''' - tP") = a in lh de tr I t

(Jill < grad (/Jm 11' > + cp«(pm - <pt' = 0 in the ele lr d melal)

b) Electrolyte-Metal Frontier (Fig. 3)
.E: normal to the frontier pointed to the

metal; II ~ II = 1.
i: = < i.1~>: = current flow density

crossing the interface at P.
Generalized Butle r- Volme r' s law indi-

cates that current flow density is in rela-
tionship with the potential jump at the
interface.

where cp: IR -7 IR is a nondecreasing,
continuous function with cp (0) = O. It is
built with tables and data provided from
ALYSER@ company, and we use it for the
numerical examples (Fig. 4).

Then (Eqn. 1.3) gives

There is current conservation crossing
the interface.

1.3. Remark
The generalized Butler- Volmer rela-

tion is a characteristic of the couple elec-
trolyte-metal. And for each couple, we
have a different relation. Suppose that all
electrodes are from the same metal, thus
there is only one generalized Butler- Vol-
mer relation.

o

i = 1 2 ... nm

o inne

(_._)
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Fig. 4. Generalized Butler- Volmer junction

1/> (X) = 1~I.p (y) dy (3.2)

We call problem 3 the variationalform
of our problem.

Problem 3: Find functions <[J~'E H1
I

(<[Jlin, T'!lJ (V)): i = 1,2... , nm and <[Je E HI

(Qe) minimizing the functional J (u~, u~,
..., u~n' ue) defined by:

To determine the potential distribution
in the electrochemical system D, we have
to solve all the Eqns. 2.1 and 2.2. These
equations are linked with generalized But-
ler- Volmer conditions at interfaces elec-
trodes-electrolyte. This system is not lin-
ear due to the non-linearity of the general-
ized Butler- Volmer relations.

Eqns. 2.1 and 2.2 defined the differen-
tial or classical formulation.

The problem 1 is:
Find functions (/)e and l!J7 verifying

Eqns. 2.1 and 2.2.

3. Adapted Formulations to the Finite
Element Method (FEM)

Consider first some spaces of func-
tions adapted to the problem. Let Q a
bounded domain ofIR2 (orIR3), aQis the
frontier of Q. (aQ is a closed curve if DC
IR2 and a closed surface if QC IR3.) Let r
a non-null length part of aD. Hl(D) is the
set of all the functions defined on D and, if
fis a such function, the integral:

In [f + II gradfll2]drexists and is bounded.

Mis the surface element if DClR2 and the
volume element if QCIR3. The functions
of HI (D) have no constraints on aQ, the
frontier of Q. We introduce constraints on
r,then we select some functions ofHI(Q).
We choose the functions taking the fixed
value Von r.This set of functions is:

N
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3.1. Theorem 1: The Problem 2 Has a
Unique Solution
I. The demonstration of this theorem is

in an internal report [5]. The important
hypothesis is that the generalized But-
ler- Volmer function cp is nondecreas-
ing. This theorem is important for the
practical aspects, proving the mathe-
matical modeling consistency.

2. The demonstration of this theorem is
constructive: it uses a method allowing

Then, the problem 2, called weak for-
mulation of the problem 1, becomes:

Find ell?,E HI(n?"ri1J(V;))j i = 1,2, ... nm

and cJ>eE H1(oe) uch bat:

nm2:)1 ~(elIi - elIe) (tti - ue)ds) = 0
i==l r,sv

for any ue E W(ne) and for any u?, E H1(n?" r;'h(V;))' i = 2 ... nm

where ds is the length element, if ~BV is a
curve, and ds is the surface element, if ~BV
is a surface.

Introduce a primitive of cp:

the numerical solving of the problem.
This method is quite complicated to
employ, and we have prefered (with-
out excluding), more simple methods.
There will be developed in Eqn. 4.

3. We show also that the problem 3 is
equivalent to the problem 2.

4. If the solution of problem 2 is enough-
Iy regular, it is solution of the problem
1.

5. Thus, whatever the conductivities of
the environments (strictly positive, con-
tinuous functions in each environment),
whatever the potentials Vi given, what-
ever the generalized Butler- Volmer
functions cp, (qJ : nondecreasing), the
problem 2 has an unique solution which
gives the potential distribution in all
the system. From there, we obtain the
current distribution.
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Fig. 5. Graplz of a linear
affine function defined on
tlze triangle PI' P2• P, with
the three values u(PJ.
u( P). u( P,)
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We built the triangulation shown on
Fig. 8. Then, the contribution to the inte-
gral (3.2) relative to the node Pis:

qJ (cJ>';' (P) - cP: (P» (l/!'(P) - (u~(P»
[IPCI + IPDI]

and this integral (3.2) is approached by:

where~i (cJ>';', Sl!e) is a vector depending on
the interface T;8V' Pratically, we introduce
only one vector cJ>of the node values
triangulation, and we give two /lumbers to
each node of an interface electrolyte-elec-
trode. Then, the approached problem of
the problem 2 becomes:

Find cJ>satisfying Dirichlet boundary
conditions, solution of the system:

(4.1 )

4.4. Remark
The vectorial equation Eqn. 4.2 says,

in a certain way, that there is full current
conservation.

(4.2)A W + ~ (cJ» = °
(4.2) is a nonlinear equations system,

composed of a linear part A cI>,coming
from electrolytes and electrodes (non-con-
stant potential) and a nonlinear part, ll. (cJ»,
coming from interfaces where a general-
ized Butler- Volmer condition is fixed.

4.3. Physical Interpretation
A physical interpretation of the com-

ponents of the vector ~ ($) can be given.
Let P a interface node (Fig. 8). This node
has two numbers II and 12, Let cJ>the
solution of the system (4.2). The compo-
nent II of cI>isthe potential in the electrode
in P and the component 12is the potential
in the electrolyte.

W,] and Sl?J;, are these two components.
~/I (cI»: I II' component of the vector

~(cI».
~/2( cJ»: I I~ component of the vector

ll.( (fJ).
Then, !1/1($) is the current crossing

CD.
If ~(cJ» > 0, the current is entering into

the metal.
If!1( $) < 0, the current is entering into

the electrolyte.
And !1,I($)= -!1h( $).
If the situation is like in Fig. 9, It is only

the length of PC which is taken instead of
PC + PD.

sents the node value. Nodes are numbered
and the kIll vector's component is the value
at the node k.

4.1. Remark
The quality of the approached solution

strongly depends on the triangulation of
the domain.

We note:
(fJ~~ vector of values at nodes of the
-/

triangulation of Qj" of the approximation
of $';'.

qF: vector of values at nodes of the
triangulation of Qe of the approximation
of cJ>e.

4.2. Approached Solution by a Polye-
dral Graph

An approached solution has a polye-
dral graph. One typical example is given
on Fig. 7. Polyedral graph functions are
totally described by the vector of nodes
values. Furthermore, these functions be-
long to the space HI.

One expression such as
f""n~ a'~< grad <P'~Igrad ul1l> drhas a~~ . 1 I I

value which can be written < AmcI>'~1u'~' >
i-I I

where A'f is a square matrix of size N'f'. N';'
is the number of nodes of the triangulation
of Q7. This matrix is a function of the
coordinates of the nodes and the conduc-
tivity a'l'. (A'r: stiffness matrix). All de-
tails concerning the calculus can be found
in [1][2]. Now, we use software able to
generate automatically meshes of domai ns
and stiffness matrices [4].

To approximate the terms:

4. Finite Element Approximation

Fig. 6. Full domain Q discretized

To our point of view, that is the prob-
lem 2 of the Eqn. 3 which fits the best to the
finite element method. We show briefly
the finite element discretization for the
linear part and will show more completely
the nonlinear discretization.

We are in the case where Q C IR2 and
use linear, affine trial functions on trian-
gles. An approximation of the solution on
a triangle is now defined by the values of
this approximation on the three vertices of
the triangle (Fig. 5).

On the full discretized domain (Fig. 6),
an approached solution is defined by the
set of values on each node (or vertice) of
the triangulation. Theses values are put
into a vector where each component repre-
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4.5. Theorem 2: The Approached
Problem has a Unique Solution

This unique solution is the vector 4>,
and its components are the electrical po-
tential values in each node of the mesh.
Solving the set down approached prob-
lem, we obtain the potential in the electro-
lyte, in the electrodes and the potential
jumps at the interfaces electrodes-electro-
Iytes. Finall y, from potentials, we get eas-
ily the currents.

5. The Potentials in the Electrodes
Are Given

The conducti vities of the electrodes is
largely superior to the conductivity of the
electrolyte ((J';/cre = I05). This yields the
near constancy of the potential of each
electrode. Vi is the constant potential of the
electrode .Q';~i = 1,2 , ... , nm. Then the
only unknown potential distribution is in
the electrolyte.

If lP' is this distribution, it is a solution
of a similar problem to (2.2).

i :
P~tentia) jumps
i I
i I
1 I

I

For the finite element approximation
of (5.2), we discretize only the electrolytic
domain. The problem of potential jumps
at the interfaces electrode-electrolyte is

7
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y

Fig. 7. Approached solu-
tion: typical polyhedral re-
presentation

solved, because the potential of the elec-
trodes is supposed to be known, and only
the potential in the electrolyte is unknown.
Then, in Eqn. 4, we obtain for the vector
c[f of the potential values at the nodes, the
Eqn.5.3

with the same meaning of terms as the
Eqn.4.2.

dcpe
-=0
dv onrN

(5.] )

A lP' + Ii (lP') = 0 (5.3)

i = 1 2 ... nm

And its weak formulation is:

6. Examples Showing the Difference
between the Two Systems of Eqns. 4.2
and 5.3

6.1. The Electrodes Potential is Un-
known

The situation is described line Fig. 10.
We give the elements and the node num-
bers. One node of the interface receive two
numbers, one for what is happening in the
electrode and the following number for
what is happening in the electrolyte. (This
order is conventionally choosen.)

electrolyte B
electrode i

C : middle ofPA

D : middle of PB

J.1 = IPCI + IPDI

interface CBV

insulating
material electrolyte

"-"-"-"-"-"- P
"-

electrode "- C middle of PA
"-
" A"-
"-

J.l == IPCI

Fig. 8. Triangulation Fig. 9. Nodes at the interface, determination oj p: haljdistal1ce
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Fig. 10. The potential in
the electrodes are un-
kllOWII,they are meshed

generalized .-.....-...
Butler-Volmer interface

Xi is the ith component of <1>,i.e., the
unknown value, of the potential at the
node number 1.

x,: potential at the node number 1.
X3: potential at the node number 3, at the

interface, in the electrode.
X4: potential at the node number 4, at the

interface, in the electrolyte.

Then, the equation number 2 of (4.2)
has the following form:

02.'-'", + O:!.:!-\:! + O:!AX~ + a2.~x7 +
OJ. r9+aJ.)(~rlO+(/.I.·\12= 6.1

Fig. II. The potelllial
ill the electrodes are
knowlI, they are 110t
meshed

This is the equation relative to the node
2. All theequationsrelative to nodes which
are not on an interface are similar: they are
linear.

The coefficients 02,1> 02,2, 02,4, 02.7'

02,9' 02,10' 02.12 are the non-null elements
of the matrix A.

Taking the two equations relative to a
same node interface:

(/-'_~\J + OJ \5 + a .,,\ + {I\.II·\·II +
{h., rn + .uq> (x -·\4) = ( .~)

(/4.2-'"2 + 1I4A.\'~+ (/~,I)X<j + 1I~.'2"'12
.uq> -'"J-\'~)= 0 (6.

Insulalors

10

6. )
03.2-':! + 1I .3"'3 + a'5'\5 +
0'.7.\'7 - )1CP (\/- \~) = 0

where f.1 is the half-length of the segments
4-9 and 4-12. Here, the term cp (xrx4)is
the third line of the vector ll( <1»and f.1q>
(xrx4)is the fourth.

01.1'\' + Cl2.}\:! + o:!. \, + o:!. r +

a2,~\ + 0 •. 1'1-"6+ 0 •• \7 = ( .4)

6.2. Remark
The two Eqns. 6.2 and 6.3 are in rela-

tionship only, because there is the nonlin-
ear term. This observation is very impor-
tant for the numerical solving of the sys-
tem (4.2).

This is an equation relative to a node in
the electrolyte. For a node on the interface,
we have, for the equation relative to the
node 3:

6.3. The Electrodes Potential is Known
The situation is described Fig. J J. The

nodes at the interfaces receive.only one
number. The second line of the system of
Eqn. 5.3 is, in this case:

. .. ..
Po~enl~a' Jump 1.42yj

Potenl!al Jump 0.~7 V

8

o
-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 1012 14 16 18

X[mrn]

> 6

~
C
Q)

0 4
"-

2

Fig. 13. Section of the
reactor

Fig. 12. Equipotelltial
lines 6U = O.2V
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7. Numerical Solving of the Nonlinear
Equations System

To solve a system of N Eqns. with N
unknown values (N can be huge), which
possesses a unique solution, it is necessary
to choose a method taki ng in account of all
the information known about this system.
This yields to a reduction of the computa-
tion time.

The system has the following form:

A cP+ 11 (rP) = 0

where A is a N x N sparse matrix and!1 «([»
a vector ofN components which many are
null.

Computerize an alternating direction
method due to Kellogg [3], let a parameter
A. > 0, and from an initial vector ([>0, we
build two sequences Sl!" and ([>11+112 of
vectors with the following relations:

Fig. 14. Finite element
mesh: 81892 nodes,
14682 elements, ten bi-
polar electrodes

The Eqn. 7.1 can be written:

(Al + A) cP"+1/2 = A.cPn -/1 «([>1/)

Fig. IS. Section of the
reactor, potentialjumps

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
:>
1
o

o 2 4 6 81012141611l?0?:):)4:)6?1l30:;?:14:I(i31l404?444648505?
x 1II1111j

(7.1 )
A. Lg?11+112 - ~,] +

5!!11+112 + fl. (~,) = Q

(I: unitN x N matrix) and now ([>1/+1/2 is
determined knowing!!!,l' solving the line-
ar system (7.1).

The Eqn. 7.2 can be written:

A. 1Sl?n I - ~, In] +
~,+If2 + fl. (~,d = Q (7.2)

This is a nonlinear system for ([>fl+ 1, the
vector <1>n+1/2 is known from (7.1).

([>0 and A. chosen, we solve consecu-
tively both systems, obtaining iteratively a
serie of vectors {([>,,}. This sequence should
converge to the unique solution of the
initial system,

7.1. Theorem 3: When the Potential of
Each Electrode Is Known (6.2), the
Sequence Converges to the Solution,
for All A. > 0 and !l!o

In this case (6.2), we programmed the
Kellogg's algorithm and proved numeri-
cally the truth of this theorem. The exact
demonstration has of course been done
[5].

Examine how the equation relative to
the node 3 - Eqn. 6.5 is expressed in the
form of (7.2).

Let u unknown, the valuex3, at the step
n+ 1, solve the following equation:

A. u - f.up (V - u) = b (7.3)

20 V

\ .

\
\ .
\
\ . . ..

\ ..

\. ./\. '.'

.'

•••• • •••• ' •• 0 !...~

•.L .' .i /

ov

......;. /
. .

.' ./
' .

... ':>./'

.... ,'- .. :/
Fig. 16. Equipotential
lines.6.U = O.2V
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Fig.l7. Sixcompart-
ments mesh; five bi-
polar electrodes not
meshed and transver-
sal section

Fig. 18. Finite
element mesh: 1343
/lodes, 2534
elements, olle

.floating electrode

! ! ! ' I t I ,

.- ..\
o l-J..j J

o 4 B 12 16 2Q 24 28 32 36 40 44 48 S' !'6 f;() h4 GA /'l
Xlmm)

18

]0

where b is known. The Eqn. 7.3 due to the
discretization that we made, has only one
unknown. Thus, all the equations of the
system (7.2) are decoupled. We have built
a powerful and fast method to solve (7.3).

Figs. ]2 and ]3 show computation
results when the electrodes potential is
known.

In the case (6.1), where the electrodes
potential are unknown, it is not possible to
prove a similar theorem to the theorem 3,
although the system (4.2) has a unique
solution. We even programmed the Kel-
logg's method «7.]) and (7.2» in this
case, and we remarked that this algorithm
can converge or not, depending on the
geometry, the value of the parameter A
and the values of the physical constants.

Figs. 14-16 show computation results
when the electrodes potential is not given.

8. Determination of the Electrodes
Potential: Floating Potentials

The computation method in the elec-
trolyte, knowing the electrodes potential,
is very powerful. We preferred to find the
floating potentials in the electrodes in-
stead of developing a new solving method
of the nonlinear system (4.2). To deter-
mine the floating potentials, we have two
different methods:

8.1. The System Possesses Some
Symmetries

This case is frequent in practice. On the
horizontal symmetry axis, the electric cur-
rent follows this axis, (see Fig. 17). Then,
the computation becomes unidimensional
and allows the determination of poten-
tials.

because: 'P(Vi - c;pe) ds. (Vi _ c;pe)

8.2. General Case
Let QI:: i = 1, 2, ... , nm, the electrodes.

['mv is the interface of the electrode i and
the electrolyte. Suppose that the potentials
Q7'and Q~:"are known and egal, respec-
tively, to VI and v,'/1/' The potentials V2, V3,
••• , VIl/I/-1 are unknown.

We show that the observable physical
potentials are the potentials minimizing
the total power needed to establish a cur-
rent crossing the inteifaces.

This total power is:

v

current

The minimization can be done by com-
puting values of Pvarying floating poten-
tials values.

Each computation of Pneeds the com-
putation of the electrolyte potential know-
ing the electrodes potentials. (System
(5.3».

Figs. 18-21 show computation results
in a bipolar cell with one floating elec-
trode.

(8.1 )

'----..-"
potential jump

Figs. 22 and 23 show computation
results in a bipolar cell with three floating
electrodes.

9. Conclusion

This software built from finite element
analysis, is a flexible tool of simulation of
diverse electrochemical systems includ-
ing nonlinear interfaces conditions. This
software gives us the potential distribu-
tion, then the current distribution at inter-
faces and by-pass are easily reachable.
This software has been successfully em-
ployed for the thesis of G. Bonvin 1992
[6]. The author shows that simulation re-
sults are near to measurements.

Numerical simulation can replace a
large number of experiences and has the
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Fig. 20. Equipotentials
lines LiU = O.2V

Fig. 19. Total power
minimization

Fig. 21 . Section of the
reactor, potential
jumps at the interfaces
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advantage to avoid to build costly equip-
ment. Scale-up variables can be fastly
evaluated.

The delicate problem of analysis of the
geometry which consisted to translate
mathematical objects to objects readable
by the mesh generation software was done
via [4] and the software SIMAIL®. These
tools help us to build meshes related to
experiences.

At the moment, our software is used in
collaboration with G. Bonvin [7] to deter-
mine a dimensionless number Gb of the
relation: 'P = Gb(Bn + 1) where 'P is the
global by-pass.

The software must be modified to take
in account the evolution of gas along the
electrodes. This can be done by modifying
the apparent conductivity in the electro-
lyte in the channels between the elec-
trodes.

bipolar e1ectrodcs

-v

Fig. 22. Finite element mesh: 1530 nodes, 2512 elements, three floating
electrodes

Fig. 23. Floating potentials obtained by minimization, equipote/ltial.~ lines
LiU = 0.2V
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List of symbols df2n: frontier of an electrode f2';1
I

df2e frontier of the electrolyte f2e
nm number of electrodes rm part of df2'~in contact with an insulatoriN
V. fixed potential of an electrode i r7~(V;) part of df2';' at a fixed potential ViI

E electrical field (V 1m) riBV part of df2'~(or df2e) at an interface electrolyte-
! electrical current vector electrode
i electrical current (A) re part of df2e in contact with an insulatorN
u'~ electrical potential of the electrode i(V) dt time derivative
ue electrical potential of the electrolyte (V) (J electrical conductivity (Q-1mm-l)
a· . elements of the matrix A (J'11 electrical conductivity of the metal (electrode) (Q-
I,'
I potential value in the electrode i Imm-I)Um

um potential value in the electrode i (J'~ electrical conductivity of electrode i (Q-I mm-I)
IAn.' stiffness matrix a" electrical conductivity of the electrolyte (Q-1mncI)

I

A stiffness matrix 4> electrical potential (V)
ll. 'Butler- Volmer' vector 4>m electrical potential of the electrode i (V)

I

x- potential at the node i 4>e electrical potential of the electrolyte (V)I

I unit matrix 4>m vector of nodes values of the approximation of 4>'il1

P total power (W) 4>e vector of nodes values of the approximation of 4>e
Gb dimensionless geometric bypass y unit normal vector to the frontier
Bn dimensionless bipolar number cp generalized Butler- Volmer function
f2 bounded domain ofIR2 or IR3 HI (f2) set of functions
f2e domain occupied by the electrolyte \!l current by-pass
f2m domain occupied by the electrodes I/f function
QI~1 domain occupied by the electrode i 11 half distance between two interface nodes (mm)
_I
Q bounded domain with the border .Ii. parameter (> 0)
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The Industrial Electrolytic
Regeneration of Mn2(S04)3 for
the Oxidation of Substituted
Toluene to the Corresponding
Benzaldehyde
Pierre Vaudanob), Eric Plattnera), and Christos Comninellisa)*

Abstract. A new industrial process for the electrolytic regeneration of Mn2(S04h is
presented in which:
- a slurry of MnSOiMn2(S04)3 in 55% H2S04 is used as a carrier,
- the electrolyte is purified with an optimum mode before electrogeneration, and
- a new industrial electrochemical reactor is developed for an economical electrogen-

eration of Mn2(S04h-

halogenation of substituted toluene fol-
lowed by hydrolysis; iii) liquid-phase ox-
idation of substituted toluene with py-
rolusite (natural Mn02)'

For a chlorine-free product (required
for the production of pharmaceuticals and
fragrance ingredients) liquid-phase oxi-
dation with pyrolusite by the batch proc-
ess is suitable. The main problem in this
process is the formation of large amounts
of wastewater containing H2S04, MnS04.
organics, and other impurities (initially
present in the pyrolusite) which must be
treated before disposal.

The electrolytic oxidation of substitut-
ed toluene to the corresponding benzalde-
hyde is one alternative that should be
considered. Since direct electrooxidation
of substituted toluene is not capable of
giving the aldehyde with good productiv-
ity, the indirect two-stage electrochemical
process ('ex-cell' process) becomes the
method of choice [2-4]. In the 'ex-cell'
process, a carrier (M/+) is oxidized in the
electrochemical reactor [M(Il+m)+] and then

1. Introduction

Benzaldehyde and its derivatives are
important organic intermediates in the pro-
duction of dyes, pharmaceuticals, perfum-
eries, and pesticides.

There are currently three commercial
routes for the production of substituted
benzaldehyde [1]:

i) vapor phase oxidation of substituted
toluene by air over a catalyst (V 205) at
high temperature (500°); ii) side-chain
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