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Vibrating Molecules on Your
Computer Screen
Daniel Huber*

A program that allows visualization
and animation of molecular normal vibra-
tions: Available forMaclntosh, PowerMac,
and PC computers as public domain soft-
ware, see [1-3].

IR spectroscopy is one of the major
tools of organic analysis. Nevertheless, its
base, molecular vibration, isoften shrouded
in mystery. We will discuss a tool that
gives you some hands-on experience and
lets you experiment with molecular vibra-
tions without the burden of intricate math-
ematics.

Have you ever had difficulties visual-
izing a particular vibrational normal mode
of a molecule? Have you ever had to
explain the equivalence of degenerate nor-
mal vibrations? Or would you just like to
play around with the vibrations of a mol-
ecule? See how it looks if you superim-
pose several normal modes? Investigate
what group vibrations are, without which
vibrational spectroscopy would hardly be
such a valuable tool?

Well, we cannot solve all ofyourprob-
lems, but we may offer some help. We will
first try to explain how such information
may be calculated. Subsequently, with the
help of a computer program called 'Mol-
vib' we will discuss some examples. We
hope that we will whet your appetite for
more and encourage you to do some ex-
periments of your own.

*Correspondence: Dr. D. Huber
Metrohm Ltd.
CH-9100 Herisau

Motivation for a Classical Approach

To calculate the internal motion of a
molecule is a formidable task. Fortunately,
many of the observed phenomena, which
are due to electron motion, nuclei motion
and rotation of the whole molecule, can be
separated on the basis of their energies
into distinct groups. Remembering that
electrons are involved in phenomena like
emitting or absorbing UV or visible light,
vibrations of molecules are associated with
IR radiation and rotations with microwave
radiation, we realize that the energies in-
volved differ by orders of magnitudes.
Classically, the higher the energies, the
faster the corresponding motion. If we
have two superimposed motions with
widely differing velocities, the faster one
has time to equilibrate. We can calculate
the fast motion to a good approximation
assuming that the slow motion is frozen.
This is the basis of the so-called adiabatic
approximation, which allows separation,
that means 'to calculate separately', of the
different motions. Unfortunately, we have
to perform the calculation of the fast mo-
tion for every fixed position of the slow
motion, but this is a small price to pay for
the reduction of complexity achieved.

In many applications, this trick of sepa-
ration works well, but there are cases where
this approximation breaks down. We then
speak of 'coupling' , e.g. vibronic (vibra-
tional-electronic) coupling in floppy mol-
ecules like NH3 (the 'umbrella' vibration
splits electronic energies), or vibration-
rotation coupling in linear molecules like
H2, where centrifugal forces change the
vibrations. Expressed in 'classical' lan-

guage, the two 'separated' motions influ-
ence each other. In terms of quantum me-
chanics, the combined eigenstate can no
longer be expressed as a product of two
independent eigenstates.

Having dealt with the separation we
now assume that the motion of the elec-
trons is already known. There are many
different quantum chemical methods, dif-
fering wildly in accuracy and computa-
tional effort, to obtain this information,
e.g. HF-SCF,MCSCF,CI. ... These calcu-
lations give the equilibrium geometry as
well as the forces on the nuclei if we
deform the molecule away from the equi-
librium position. For the calculation of the
vibration, we neglect the rotation alto-
gether.

Normal mode analysis is a classical
approach. Knowing that the atomic world
is governed by quantum mechanics, it may
well be asked if it is reasonable to adopt a
classical model. Electrons in a molecule
hardly exhibit any classical features (e.g.
well defined position and velocity) and, if
they do, only in very particular circum-
stances (e.g. in extremely high excited
Rydberg states, a certain localization of
the electron has been observed). Why
should it be different for nuclei? The an-
swer is twofold. First, the mass m of a
nucleus is four orders of magnitude larger
than that of an electron and second, in
most molecules, the electrons push the
nuclei rather strongly towards the equilib-
rium position. To determine the quantum
mechanical ground state one searches for
a state with as Iowan energy as possible.
To minimize the energy in the ground
state, a compromise between small poten-
tial energy and small kinetic energy must
be reached. To minimize the potential
energy we must try to squeeze the wave
function near the potential minimum. How-
ever, because of the Heisenberg uncer-
tainty principle, localizing the wave func-
tions leads to high momentum p. As the
kinetic energy is equal to: p2/(2 mY, the
contribution of the momentum to the en-
ergy depends on the mass of the particle.
We may therefore localize a nucleus with
less energy than an electron. Nuclei in the
ground and low energy states are therefore



Fig. 1. Animation window with NH3
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much more localized than lighter parti-
cles. That is why the nuclei in a molecule
are more amenable to classical treatment
than electrons.

To calculate any possible motion of all
the nuclei belonging to a molecule using
classical mechanics and the approxima-
tions to be discussed later on, is still a
formidable task (by nucleus we mean the
nucleus and the nonbinding core elec-
trons). To solve it, we try the time honored
principle of divide and conquer. We do not
ask, 'what is the most general motion' , but
'what are the most simple motions'. Hav-
ing found some simple solutions we can
build up more complicated motions by
running several simple ones at the same
time, we say we 'superpose' them (for the
math enthusiast: this is allowed because
all the equations are linear). If you think
about this, a question will come to your
mind: 'Can any possible motion be ob-
tained this way?'. That this is indeed the
case was already shown 200 years ago by
the French mathematician Fourier (pro-
vided the simple solutions fulfill a number
of requirements). In our case, the simple
solutions are called 'normal modes' or
normal vibrations. The more general term
'Eigen' mode or vibration is also used. It
turns out (see separate box) that normal
vibrations associated with low energies
can be described to a good approximation
by a synchronous motion of all the atoms
that is sinusoidal as a function of time.
Every single atom moves as if it were a
point mass connected to a spring, all atoms
move with the same frequency and all pass
the equilibrium position at the same time.

One question still remains: 'What can
be inferred from the classical treatment
about the quantum properties of the mol-
ecule?' The quantum mechanical energies

of a harmonic oscillator are given by
(n+1h) hv, where v.is the classical fre-
quency. We may therefore obtain the en-
ergy levels from the classical calculation.
On the other hand, we do not get any
information about the wave function and
the probability to find the nuclei some-
where (probability density). Note that the
classical amplitude has nothing to do with
the amplitude of the wave function. The
former is related to energy, the latter to
position probability. We also note that
only for very high quantum states does the
smoothed out probability density begins
to approach its classical counterpart.

Approximations

Vibrational normal mode analysis is
based on two approximations that have
proved useful in many applications.

The first one consists of replacing the
quantum treatment by a classical model of
point masses. The second one in restrict-
ing our discussion to 'small' vibrations.
This leads to a model of point masses
moving under the effect of spring forces,
i.e., the classical model we already talked
about.

The justification for the springs fol-
lows from the assumption of 'small' vi-
brations and the existence of an equilib-
rium position. Small vibrations means that
the nuclei only deviate slightly from their
equilibrium position. Assuming an equi-
librium geometry is equivalent to stating
that the potential energy surface has a
minimum. In the vicinity of a minimum,
the potential can always be approximated
by a quadratic function, a parabola (e.g.
I(x)= Co + CIX + C2x2). As the total force
acting on each nucleus is zero in the equi-
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librium position (co= 0, Cl = 0), we get
forces F (the negative derivatives of the
potential) that are proportional to the de-
viation x from the equilibrium. Or ex-
pressed in a formula:

F= -kx

This is the formula for a spring (Hooke's
law); k, termed the force constant, deter-
mines how stiff the spring is. The minus
sign indicates that the force opposes the
deviation, it pushes the nuclei back to the
equilibrium position.

The assumption of 'small' vibrations
also allows replacement of all bent move-
ments like bending or torsion by the tan-
gent in the equilibrium position. There-
fore, the nuclei will move along straight
lines.

By the same reasoning we neglect all
changes of distance and force that are not
proportional to x (because, provided x is
small enough, x2 or any higher power of x
is much smaller than x). Considering, e.g.,
a bond between atom A and B and moving
B in a direction perpendicular to the A-B
axis, we may neglect the change in dis-
tance and force due to this move because
they are proportional to x2.

Applications

You may learn to drive a car without
knowing how the engine works. However,
normal mode analysis is not such a reliable
tool as a car. If you are simply using it
without any knowledge about its working,
you may draw wrong conclusions. You
should at least be familiar with the ap-
proximations involved.

On the other hand, a car should be easy
to operate, so that the driver can concen-
trate on the traffic. To make normal mode
analysis easy to understand we developed
a computer program that allows you to
concentrate on the chemical problems and
frees your mind from the intricate calcula-
tions involved. The program is available
for the Maclntosh and PC computer. Ver-
sion 2 for the Maclntosh can be obtained
from the American Chemical Society [I]
and version 3 for the Maclntosh directly
from the author [2]. There is also an adap-
tation for the PC available that can be
obtained from [3]. This program makes it
possible to examine normal vibrations
graphically, with and without animation,
as well as numerically. We hope that such
a tool may help to obtain a deeper under-
standing of normal vibrations. As an ex-
ample, Fig. 1 shows a screen shot of an
animation of NH3' Different representa-
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Fig. 2. Equilibrium geometry of NHJ seen from
different view points

tions of a molecule may be choosen de-
pending on the feature we want to stress.
Fig. 2 shows different representations of
NH3' Fig. 3 depicts five snapshots of the
animated umbrella vibration ofNH3. Fig.
4 provides a static picture of the same
vibration in three different representations.
The line drawn from the center of an atom
to a small circle indicates the relative size
of the amplitude. Fig. 5 demonstrates how
you can use (or misuse) perspective.

To untertain you further in this field,
we describe below some simple applica-
tions.

Simple Observations
First we consider some simple mol-

ecules such as H20, CH4, etc. Try to verify
that, due to the simplifications made, all
the atoms move on straight lines. Con-
vince yourself that this is also true for
'bend' vibrations. Try to see how all the
atoms pass the equilibrium position at the
same time with maximum velocity and
how they slow down near the turning
points, exactly like apoint mass connected
to a spring. Take into account the masses
and verify that the center of mass stays at
the same place (note however, that the
graphical representation is only accurate
to plus or minus one pixel; you may there-
fore see spurious motion of this size).Note
also, but this is harder to see, that there is
no angular momentum in a (non degener-
ate) normal vibration. Also, try to verify

Fig. 3. Five snap shots of the NHJ 'umbrella'
mode

that lighter atoms often have larger ampli-
tudes.

Isotope Effect (Mass Effect)
From elementary courses you may re-

member that the frequency of a point mass
m connected to a spring with force con-
stant k is proportional to Vkim, that is,
inversely proportional to the square root
of m. Further, because in a normal mode
motion several point masses are moving
synchronously, you may try to replace the
different masses by one single effective
mass meff' This is like pulling the string of
ajumpingjack: the arms move, the hands
move, but you only feel one single inertia.
But how do we calculate an effectivemass?
The effect of the mass consists in oppos-
ing acceleration, that is inertia. As all the
atoms move synchronously, the accelera-
tion is the larger, the larger the amplitude.
To take this into account, we have to
weight the mass m of the atoms with their
amplitude a to get an average mass and to
multiply by the number n of nuclei:

"am£.J I I,
lIlefJ = /1 La,

where i runs over all atoms. Consider now
a molecule and a given normal vibration
with effective mass m I' How will the fre-
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Fig. 4. Static representation of the NHJ 'umbrella'
mode

Fig. 5. Three different settings for perspective
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quency change if we replace an atom by
another isotope (that is a chemically
equivalent atom with the same number of
protons but a different number of neu-
trons). As the new atom is chemically
equivalent, the force constants do not
change. If we know (or can guess) the
amplitudes, we can make a guess at the
frequency change. If we do not know the
new amplitudes, needed to obtain the
effetive mass, we may approximate them
by the old ones. Assuming we estimated
(or calculated) the old and new effective
masses m I and mz, the frequency changes
proportionally to the inverse of the square
root of the effective mass. We may there-
fore make an estimation (or calculate the
accurate value if we know all the ampli-
tudes accurately) of the new frequency ~
from the old one w] using the expression:

L~ __
Fig. 6. Decoupled CH stretch vibration in CT]H.
Mainly the CH stretch vibration is active, the rest
of the molecule does scarcely move. The pure CH
stretch vibration has a much higher frequency
than all the other bonds and therefore couples
poorly to the rest of the molecule.

Let us look at the example of Hz: The
amplitude must be the same for both H-
atoms (center of mass system) and we
obtain a measure for the effective mass of
2 amu (atomic mass unit). If we now
change one of the H-atoms to deuterium (2
amu) and use the old amplitudes, we ob-
tain an effective mass of 3 amu. Our esti-
mation gives a ratio of ~/w] = 0.816.

Let us now test our prediction by a
normal mode calculation:

The equilibrium distance is 0.74 A, the
force constant 1.625 105 dynlcm and the
mass of H: 1 amu. The program gives a
frequency of2349 cm-]. Changing one of
the H to deuterium we obtain a frequency
of 2035 cm-J• The ratio is ~/w] = 0.866.
Well, the accuracy of our prediction is not
overwhelming. Can you imagine where
the error comes from? Sure, we did not
account for the change in amplitudes. Of-
ten it is possible to obtain some useful
information without too much calcula-
tion. But do not expect too much accuracy
from a coarse guess.

Fig. 7. Decoupled CH stretch vibration in CT]H.
Here the CH stretch is scarcely active whereas the
rest of the molecule moves strongly.
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Group Vibrations
It may be a long time since you played

with swings. However, you may have ob-
served that two swings of approximately
the same length, mounted on the same
support do exert an influence on each
other. If you excite one swing the other
will start to move on its own, a phenom-
enon known as resonance. Not so if the
two swings differ appreciably in length. A
similar thing happens in a molecule. If
some fragment of a molecule on its own
has an Eigen frequency that is largely
different from all the other frequencies in
the rest of the molecule, then this Eigen
mode survives even in the whole mol-
ecule. This phenomena is heavily exploited
in IR spectroscopy where specific groups
are identified by their characteristic fre-
quencies that survive in the composite
molecule. As a simple example we take
CH4 and replace three of the hydrogens by
the heavier tritium to get CT3H:

mass C: 12.012 amu, H: 1.008 amu, T:
3.015 amu

Fig. 8. The bending frequency of(T]C)H is much
lower than the CH stretch frequency and couples
well to the rest of the molecule
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Fig. 9. Two degenerate normal vibrations. E} and E2, of H]

- distance C- T and C-H: 1.0929 A
- force constant stretch: 5.04 105 dynJ

cm, bend: 0.703 105dyn/cm
- all the other force constants are as-

sumed to be zero
All the frequencies observed in the

CT 3fragment are much lower than the CH
stretch one. Therefore, we Q1ayexpect to
observe a normal mode that consists mainly
of a CH stretch motion. This is the highest
frequency mode (3045 cm-I) and it is de-
picted in Fig. 6. In all the other modes, the
CH stretch is only very little excited, ei-
ther the H simply 'rides' on the C (fre-
quencies: 1758,1098,446 cm-I) or theCH
bend vibration is active (frequencies: 2011,
1995, 1510, 1508, 1076 cm-I) in which
case the distance C-H does not change
neither. Fig. 7 gives a mode, where the H
is 'riding'. This is in contrast to CH4,

where no isolated mode CH stretch exists,
because the different CH stretch will cou-
ple to each other. Convince yourself by
running all the modes of CH4. On the other
hand, the bending motion of the CH bond
in CT 3H has a much lower frequency and
is therefore well able to couple to the rest
of the molecule. An example is given in
Fig. 8.

Degenerate Normal Vibrations
If two normal vibrations have the same

frequency, that is they are degenerate,
they will in general exhibit some symme-
try. Actually, the symmetry is the origin of
degeneracy (there are some rare excep-
tions, called accidental degeneracy). If
there is symmetry, there are several equiva-
lent vibrations. However, a normal vibra-
tion calculation does not usually yield all
of the equi valent vibrations. One may well
ask, why the calculation does distinguish
several of them.

We mentioned above that if we super-
pose (running at the same time) two nor-
mal vibrations, we obtain a possible mo-
tion of the molecule. If the frequencies of
the vibrations are different, the result is no
more an normal motion (if the frequencies
have an irrational ratio the atoms do not
even come back to their original position).
On the other hand, if we superpose two
normal vibrations with the same frequency,
we obtain a new normal vibration. By
changing the relative phase and amplitude
(the starting configuration) of the two
motions we may create an infinite number
of them. They are all equivalent to each
other. We may pick some of them to create
the others by superposition. The calcula-
tion we did was guided by our choice of
the x, y, z coordinate system. If we would
have chosen the axis along different direc-
tions in the molecule, we would have got

some different, but equivalent vibrations.
Note that you cannot try that with 'Mol-
Vib', because the program chooses the
axes along the principal axes of inertia by
default.

Let us look at a fake molecule H3
whose equilibrium geometry is choosen
as an equal sided triangle:
- mass H: 1 amu
- distance H-H: 1 A
- force constant stretch: 7.7 105 dynlcm,

all other force constants are zero.
Due to the symmetrical equilibrium

configuration we obtain from our program
two degenerate normal vibrations, techni-
cally called EI and E2 (due to their symme-
try). They are depicted in Fig. 9. To dem-
onstrate that we can generate a different
equivalent normal vibration, we will su-
perpose these two vibrations. To run these
two normal vibrations at the same time,
we choose for the amplitude of E] a value
of 0.5 arbitrary units (the amplitude of the
second vibration is chosen by the pro-
gram: a2= Yl-a)2) and a phase shift of
zero. We then obtain the vibration de-
picted in Fig. 10. This is the vibration E)
from Fig. 9, but rotated by 120 degrees
counter clockwise. Therefore, we have
obtained an equivalent, but different nor-

Fig. 10. Same vibration as EJ from Fig. 9 but
rotated by 120 0, This vibration is obtained by
superposition of EI and E2 from Fig. 9.
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Vibrational Normal Mode Analysis

We will solve this problem in Cartesian coordinates using the good old Newton
formula: Force equals mass times acceleration.

As preparatory work, we first look at a simple point mass with mass m connected to a
spring with force constant k. By x we denote the deviation of m from the equilibrium
position, that is the elongation of the spring. Newton's formula leads to:

x" = - (kim) x
where x" denotes the second derivative relative to time, that is the acceleration. This
means, that the acceleration is proportional to the negative elongation. A possible solution
to this equation is given by the sine function:

x = Xo sin(wt)
where wis the angular frequency andxo the amplitude. By inserting the solution back into
the equation, we find:

w = vklm
With this we are ready to tackle normal vibrations.
In the equilibrium configuration, the total force on an atom is zero; we only obtain forces

different from zero if we change distances between atoms. For instance, if we move atom
iby an amount of Xi along the x direction, the force on atom j along the y direction /yj will
be proportional to Xi:

J;j = -k}j;xi xi

the proportionality constant kyj•xi is called 'force constant' . Collecting all the forces into
a column vector F = (j~l>J;'I,fzJ,Jx2, ... ) and similarly all the displacements into a vector
X = (Xl>Yl> Zl>X2"') and finally all the force constants into a matrix K with first raw (kxJ;x1>

kxJ;yl> kx1;zl> kxl;x2"")' second row (kyJ;xl> ky1;yl>...) etc. allows us to write
F=-KX

which looks exactly like the formula for a spring. If we also collect the masses into a matrix
M that contains 0 in all positions except on the diagonal, where we have (ml> ml>ml> m2,

m2, m2, m3," .), we may write Newton's formulae: for ml along direction x:fxJ = mJ Xl'"

for mJ along direction y:fyJ = ml YI" etc., very compact as:
F =M X"

or if we replace F by -K X:
-KX=MX"

We may rewrite that to:
X" = _(M-1K)X

and read it as: The second derivative of X is proportional to -X. Here M-J is similar to M
but m replaced by 11m . This looks like the 'point mass and spring' example above, does
it? No? You object that we do not have numbers like above but vectors and a matrix. Now
you have a chance to get a glimpse of the beauty of mathematics. If you hate mathematics,
please skip the rest of this paragraph. For the proof of the sine differential equation the only
assumption made is that we have an 'object' y that changes with a continuous parameter
t, in our example the time. That two such objects Y (e.g. Y for two different t ) can be
'subtracted' to give an object of the same type y. And that a second type of objectp exists
(e.g. the proportionality factor) that can 'multiply' y to give an object of type y. And finally
that t has an inverse. If y, p, and t are numbers as above or if y is a vector and p a matrix
or anything else does not matter at all, the proof is always true. Mathematics tries to focus
on the essential. And a lot of problems from many different fields, stripped from
unimportant details, are essentially identical! Therefore, by the same reasoning as above,
a possible solution for X consists in a motion that varies sinusoidally with time:

X = Xo sin(wt)
where Xo is a now a vector of amplitudes. Therefore, all the atoms move in unison. They
all pass through the equilibrium position at the same time, they all move with the same
frequency. Only the amplitudes and directions are different.

Our treatment has one shortcoming. By using plain Cartesian coordinates we included
rotation and translation as well and we will get six normal vibrations with zero frequency
corresponding to these motions (no restoring force). There is nothing wrong in principle,
but we have more work to do. Therefore, usually internal coordinates like stretching and
bending are used. This choice makes the calculation more complicated to understand, but
does add nothing to the principle. We therefore will abstain from discussing it here.
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mal vibration by combining the two vibra-
tions calculated by the program. By chang-
ing the phase shift and amplitudes we can
generate all of the other equivalent vibra-
tions.

Vibrational Angular Momentum
Separate treatment of vibration and

rotation quite often gives an excellent ap-
proximation. However, in general it is not
possible to completely separate rotation
and vibration. Angular momentum, that is
'rotation' , can be created by the motion we
consider as vibration. Only the total angu-
lar momentum of the nuclei motion (ne-
glecting coupling to electrons) is constant.
It is given by the addition of the rotational
and vibrational angular momenta. Or in
simpler terms, the rotational energies de-
pend slightly on the vibrational state and
vice versa.

We mentioned above that nondege-
nerate normal vibrations of a molecule can
never have an average angular momen-
tum. Classically, this can be understood
by noting that all the atoms make a con-
certed sinusoidal motion along straight
lines. Every configuration occurs twice,
once with forward and once with back-
ward momentum. Therefore, as the angu-
lar momentum is constant (no external
torque), the average angular momentum
must be zero. If we have more than one
normal mode with different frequencies,
the phase relation changes continuously,
and the average probability for left and
right angular momentum is the same.
Therefore, no average angular momentum
can result neither. This is different for a
degenerate normal vibration. Here it is
possible that two independent degenerate
modes have a fixed phase relation. If you
ever played with Lissajous figures and
realized that one may generate a circular
motion out of two straight motions, you
will easily understand that an average an-
gular momentum can result. If you do not
know what Lissajou figures are, imagine a
circular motion and choose two perpen-
dicular axes. Projecting the circular mo-
tion onto the axes you will get two linear
motions with a relative phase shift of 90°
that are sinusoidal with time. If you now
reverse the process and superpose the lin-
ear motions you regenerate the circular
motion. By changing the phase shift you
can even generate elliptical motions. In
Fig. 9 two degenerate normal modes of the
H3 from the above examples, El and E2,

are shown. If we let these two modes run
at the same time, it is possible to generate
an average angular momentum whose mag-
nitude and direction depend on the phase
between the two independent motions and
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Fig. II. Vibration with angular momentum obtained by superposition of EJ and E2from Fig. 9

their amplitudes. In Fig. 11 we chose for
the first mode an amplitude of 0.707 arb.
units (= 1/V2.,both vibrations have equal
amplitudes) and a phase shift of 90°.
Obviously, we obtain an average angular
momentum. On the other hand, if we
choose a phase shift of 0 or 180 ° we

Announcement

Summer School (3rd Cycle out-of-
town Seminar of Physical Chemistry)
on 'Advances and Challenges in Com-
putational Chemistry'

Organized by Profs. J. Weber (De-
partment of Physical Chemistry, Uni-
versity of Geneva) and M. Griitzel (In-
stitute of Physical Chemistry, EPF-
Lausanne). This summer school is in-
tended for graduate students, post-docs
and researchers (chemists, physicists,
biochemists, crystallographers, etc.),
working in both academia and industry,
and inters ted in a review of the basic

obtain vibrations similar to Fig. 9 E2>but
rotated by 120 and 240 0. In both cases the
average angular momentum is zero. The
conclusion is, that by running several de-
generate normal vibrations simultaneously
we can create angular momentum (that is
'rotation') by pure vibrational motion. The

tools which are now popular in compu-
tational chemistry:
- force field methods, classical molecu-

lar dynamics, free-energy perturba-
tion methods

- semi-empirical quantum chemical
methods

- ab initio methods at various levels of
theory (SCF, Moller Plesset, Coupled
Cluster, etc.)

- density functional theory, local and
nonlocal exchange-correlation func-
tionals

- first-principles (Car-Parnnello)
For all the methods, the main features

value of the angular momentum generated
depends on the relative amplitudes and
phases.

Requirements to Run the Program
The Mac version of Molvib has been

tested an the following MacIntosh com-
puters: MacPlus, MacH, and the Power-
Mac. It needs at least 512 kB of RAM. On
the MacPlus the animation is a bit slow but
still usable. It has been tested with version
6.07 and 7.0 as well as 7.5 of the MacOS.
The PC version runs under MS DOS ver-
sion 3.1 or higher. It needs at least 256 kB
of free RAM and a numeric coprocessor is
recommended.

Included in 'Molvib' are several sam-
ple input files as well as documentation
about the handling of the program and a
TEX file about the underlying theory.

[1] Daniel Huber,J.Chem. Educ., Software, Vol.
III, Number I, Feb. 1991.

[2] To obtain the program directly from the au-
thor, please send an addressed envelope to-
gether with a formatted floppy disc for the
Macintosh (low density, sorry I only have an
old floppy drive) and either the stamps or the
necessary amount to cover the postage to the
reader.

[3] To obtain the PC version, please send a for-
matted PC disc to Prof. E. Schumacher, Kalch-
ackerstr. 69, CH-3047 Bremgarten, Switzer-
land. Please include either the stamps or the
necessary amount to cover the postage to the
reader.

of the theoretical aspects will be pre-
sented, followed by selected applica-
tions. The emphasis will be placed in
this School on recent advances in the
field and on some topics which are con-
sidered as challenges for modellers.

For further information and registra-
tion, contact:
Prof. J. Weber, Departement de Chimie
Physique, UniversitedeGeneve,30quai
Ernest-Ansermet, CH-1211 Geneve 4
(Tel. 022/702 65 30;
Fax: 022/702 65 18;
E-Mail: weber@sc2a.unige.ch).


