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We believe that the main reason why these
reactions have not been investigated in
more detail [10] is that 2 and 3 are only
available in a multi-step sequence in a
total yield of at about 3% starting with
cyclopentadienide [8]. We are reporting a
much easier access of the dimers 2 and 3
by oxidative coupling of dilithium-pen-
talenediide (5).

2. Pentalene Dimers from Cycloocta-
tetraene

Ahstract. Syn-cis- (2) and anti-cis- (3) pentalene dimers are easily available by CuCIz-
induced oxidative coupling of dilithium-pentalenediide (5). On the other hand, NBS-
bromination as well of I ,5-dihydro-pentalene (4) as of I ,2-dihydropentalene (6) gives
unstable l-bromo- 1,2-dihydropentalene (7), while subsequent in situ elimination with
Et3N exclusively leads to syn-cis-pentalene dimer 2 in moderate yields.

1. Introduction

Pentalene (1) [3] has fascinated syn-
thetic as well as theoretical organic chem-
ists for more than four decades. Despite all
these attempts, convincing spectroscopic
evidence of the parent system 1 is still
missing. So far, the only pentalenes which
have been isolated were either sterically
shielded or electronically stabilized. Hexa-
phenylpentalene was the first simple pen-
talene to be isolated in 1962 by Le Goff[4],
while 'push-pull-stabilized' pentaleneslike
1,3-bis(dimethylamino)pentalene [5] or
1,4-diamino-3,6-dimethylpentalene-2,5-
dicarbonitrile [6] did not allow any con-
clusions with respect to the ground-state
properties of parent 1. In the 1970's spec-
troscopic evidence of thermally unstable
alkyl-pentalenes was increasing, starting

with trapping I-methylpentalene [7], ob-
taining UV evidence concerning 2-meth-
ylpentalene and 1,3-dimethylpentalene [8]
and climaxing in the isolation and spec-
troscopic investigation of 1,3,5-tri(tert-
butyl)pentalene [9][ 10]. Synthetically,
thermally induced 87l'-cycLizations of
8-[(dialkylamino)vinyl]fulvenes proved to
be very useful [11] and finally resulted in
the isolation of the pentalene dimer 2 as
well as of a cycloaddition product with
cyclopentadiene in cases where pentalene
(1) was supposed to be formed as a reac-
tive intermediate [8][10].
Similarly to the dimers of methyl-

pentalenes [7][8], the pentalene dimers 2
and 3 are unique in so far as they would
allow photochemically induced formal
[2+2] cycloreversions and thermally initi-
ated formal [8+2] cycloreversions as well.

In 1987 Meier et al. [12] showed that
the dihydropentalene 4 and its isomers
[13] are available by simple gas-phase
pyrolysis of cyclooctatetraene. All of a
sudden, this elegant procedure allowed a
straightforward access of the so far quite
exotic dilithium-pentalenediide (5) [14].
In continuing our efforts in view of oxida-
tive couplings of cyclopentadienides
[15][16] we thought that CuCl2-induced
oxidative coupling of 5 could be an attrac-
tive way for preparing the pentalene di-
mers 2 and 3. However, first experiments
seemed to be quite discouraging since,
after oxidative coupling of 5, chromatog-
raphy and evaporation, a pale-yellow sol-
id mainly consisting of pentane-insoluble
polymers was isolated in a high yield.
After extraction with pentane and subse-
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Scheme I. Synthesis of Pentalene
Dimers 2 and 3
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Figure. Expansions of the 1H-
NMR signals of3 (300 MHz.
CDCl,)

Scheme 2. Synthesis and Base-induced Reactions of l-Bromo-J,2-dihydropentalene (7)
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quent chromatography, 12% of a solid
consisting of a I: I mixture of 2 and 3 may
be obtained. Although the total yield is
moderate, the one-pot synthesis 4 ---7 5 ---7
2 + 3 provides a straightforward access to
2 and 3 [17]. They may be separated by
flash chromatography with pentanelEt20
50: I on Et3N-deactivated silica gel. Their
UV spectra show the typical absorptions
of the pentafulvene structural units. In the
mass spectra of2 and 3, the main fragmen-
tation is the formation of CgH6 (m/z =
102): both the IH-NMR and 13C-NMR
spectra are compatible with the symmetry
of the molecules, and the splitting of the
vinylic protons of 2 and 3 is very similar.
In the IH-NMR spectrum of 3 (Fig.)

the key proton for the assignment of vinyl-
ic H-atom's is H-C(5) at 6.94 ppm, add
with J( 4,5) = 5.1 Hz and J(5,6) = 1.9 Hz.

The dd of H-C(4) absorbs at 6.24 ppm
(1(4,6) = 0.8 Hz), while H-C(3) corre-
sponds to the m at 6.90 ppm and H-C(6) to
the broad signal at 6.12 ppm. Assignments
of H-C(l) and H-C(2) follow from de-
coupling and NOE experiments, while I3C_
NMR resonances are assigned by IH,13C_
shift correlations.
Due to the similarity of splitting pat-

terns and NMR-chemical shifts, it is not
trivial to distinguish between 2 and 3. A
first tentative assignment results from the
observed high-field shift of CO) (-4.16
ppm), C(3) (-2.16 ppm) and C(6a) (-3.46
ppm) of syn-cis-2 compared with anti-cis-
3 which has to be expected according to
steric effects. The final proof results from
simulations of the splitting patterns of
H-C(l,1',2,2') of 2 and 3 according to
AA 'XX', which is possible during decou-

piing of H-C(3,3'). It is well-known from
cyc10butanes of similar structure [19] that
cis-couplings are larger than trans-cou-
plings. Spectral analysis gives J(l, I') =
J(2,2') = 6.4 Hz and J(l,2) = J( I',2') = 4.7
Hz for syn-cis 2, however J( 1,1 ') = J(2,2')
= 2.8 Hz as well as J(I,2) = J(l',2') = 5.2
Hz for 3.

3. Allylic Bromination of Dihydropen-
talenes

Thanks to the elegant access of dihy-
dropentalenes of type 4 [13] and 6 [20]
from cyclooctatetraene [12][13], direct
introduction of leaving groups may be
studied as well. In principle, NBS-bromi-
nation provides a simple access to substi-
tuted dihydropentalenes, although trienes
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of type 4 and 6 will be prone to radical or
cationic polymerizations [21]. In fact, so-
lutions of reactive J -bromo-l ,2-dihydro-
pentalene (7) are easily available both by
NBS-bromination of 1,5-dihydropentalene
(4) (at r.t.) as well as of 1,2-dihydropen-
talene (6) (at 50°). Because of the instabil-
ity of7, base-induced HBr-elimination of
7 is applied immediately after NBS-bro-
mination 4 ~ 7 (or 6 ~ 7) to give, after
purification by chromatography over Et3N-
deacti vated sil ica gel, syn-cis-dimer 2: 16%
from 4 and ]0% from 6, respectively. In
agreement with Hafner's findings [10],
the exclusive formation of syn-cis pen-
talene dimer 2 lets us assume that pen-
talene (1) has been formed as an interme-
diate.
The structure of the unstable 7 follows

from the IH-NMR spectrum (300 MHz,
CDCI,) of the bromination mixture [22].
First of all, chemica] shifts and 31coupling
constants of the vinylic protons are very
similar to those of the penta]ene dimer 3
(Fig.), thus revealing the 1,2-dihydropen-
talene structural element of 7. Due to ad-
ditiona] small couplings, the fine structure
ofH-C(5) at 6.86 ppm is somewhat blurred.
Signals of protons H-C(4)1H-C(6) are
overlapping at 6.24 ppm, while H-C(3) at
6.70 ppm is split into a dt with 1(3,6) = 1.8
Hz and 1(3,2a) = 1(3,2b) = 2.9 Hz which
places the CH2 unit at C(2). The allylic H-
atoms produce a very typical ABX spec-
trum centered at 3.49, 3.85, and 5.19 ppm
(H-C(l)) with the coupling constants 21AB= 20.2, }lAX = 2.2 and 31Bx = 5.70 whose
signals are additionally split or broadened
by small couplings with vinylic protons.
Our investigations show that dihydro-

pentalenes of type 4 [12] are attractive
starting materials for the synthesis of the
pentalene dimers 2 and 3 by two-step (but
one-pot) syntheses, making use of dilithi-
umpentalenediide (5) (Scheme 1) or of
unstable I-bromo-l,2-dihydropentalene
(7) (Scheme 2) as intermediates. Although
the total yields of 2 and 3 are moderate in
both cases, these procedures are much
more simple than the so far indispensable
multi-step sequences.
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