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Recent Developments in
Ring=-Opening Metathesis
Polymerization (ROMP)
Andreas Hafner*, Paul A. van der Schaaf, and Andreas Miihlebach

Abstract. Properties and applications of newly developed homogeneous Ring-Opening
Metathesis Polymerization catalysts as well as Photo-induced Ring-Opening Meta-
thesis Polymerization catalysts are discussed. In contrast to well-defined, one-compo-
nent metal-carbene catalysts, the aqueous ROMP with simple RuII salts is a chain
reaction and not a living polymerization. One-component Photo-ROMP initiators were
developed with good thermal latency and are either based on early-transition-metal
alkyl complexes or on [Ru(arenehf+ complexes. Mechanistic aspects of the photo-
chemically induced solvation of RuII complexes are presented.
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Metathesis (Eqn. d) [2]. The Acyclic Di-
ene Metathesis Polymerization, a combi-
nation of (b) and (c), was just recently
discovered [4].

In 1957, Eleutorio described in a pat-
ent the ROMP reaction of cyclopentene
and norbornene with an Al203 catalyst
activated by LiAIH4 [5]. In 1960, the first
metathesis reaction of linear olefins were
reported by Banks and Bailey using an
AI20rsupported Mo( CO)6 catal yst [6]. In
1970, Herisson and Chauvin postulated
that metal carbenes [7] are the active sites
in this type of reaction [8]. In this mecha-
nism a metal-carbene species forms with
an alkene a metallacyclobutane. When
this complex decomposes in a productive
metathesis step, a new olefin is formed
together with a new metal-carbene spe-
cies. If this new olefin and the carbene
function remain in the same molecule (e.g.
by reaction with cyclic olefins), excess
olefin leads to polymer formation.

Early- Transition-Metal Catalysts

The metathesis of olefins is a reaction
in which an interchange of C-atoms takes
place between pairs of double bonds. In
1967 it was realized by Calderon and
coworkers that Eqns. a and b in Scheme J
were examples of one and the same chem-
ical reaction [1]. Today this general reac-
tion has been divided into four categories
(see Scheme 1): Olefin Metathesis (ex-
change, disproportionation; Eqn. a) [2],
Ring -Opening Metathesis Pol ymerization
(ROMP) (Eqn. b) [2], Ring-Closure Me-
tathesis (Eqn. c) [3], and Degradative

Scheme 1

Catalyst systems based on early-tran-
sition-metal halides, oxides or oxychlo-
rides with alkylating reagents as cocata-
lyst such as R4Sn or Et2AICI together with
promoters, e.g. O2, EtOH, PhOH, domi-
nated the field from the beginning (e.g. the
famous Calderon catalyst WCI6/Et2AICI/
EtOH). In the mid-1980' s, the first well-
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Scheme 2

Late- Transition-Metal Catalysts

Early- Transition-Metal Photocatalysts

The main disadvantage of convention-
al early transition-metal catalysts is their
lack oflatency in pure monomers, and the
long and difficult preparation routes. Al-
though some indications are given in the
literature that early-transition-metal alkyl
complexes can be light-sensitive and even
that irradiation can accelerate an Ha-ab-
straction reaction [16], no examples are
known, besides our own work, using the
principle of Photo-induced Ring-Opening
Metathesis Polymerization (PROMP) with
well-defined, one-component metal com-
plexes [17]. This is even more surprising
taking into account that photo-processes
are known for almost all other polymeri-
zation reactions and widely applied in a
broad range of commercial applications
[18]. Active ROMP initiators can be gen-
erated in situ using simple early-transi-
tion-metal alkyl complexes and light (see
Scheme 3). Such photo-induced Ha-ab-
straction reactions can only proceed, ifthe
two alkyl groups are in a cis-position with
respect to each other, and do not have any
j3-hydrogens. Catalysts with good thermal
latency and high photoactivity were de-
veloped [19].

This new class of catalysts can be suc-
cessfully applied for UV curing of strained
cyclic olefins like DCPD (3) to form poly-
3 (see Scheme 4) and derivatives or oli-
gomers containing cyclo-olefin side
groups.

2
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a similar complex with OR = OCMe3 is
virtually inactive.

These types of complexes act as initi-
ators in the ROMP reaction in a living
manner. A polymerization reaction is
called a 'living polymerization', if each
catalyst molecule acts as a catalytic site to
form the growing polymer chain, and the
initiation is faster compared to the propa-
gation. The advantages of living-polym-
erization catalysts are, that polymers can
be obtained with very narrow molecular-
weight distributions and that block copol-
ymers can be prepared by sequentially
adding two, or more, different types of
monomers [14]. Such polymers are ex-
pected to be useful in highly specialized
applications, e.g. in optical, electro-opti-
cal, and electrochemical devices [15].
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defined, single-component catalysts were
developed by Osborn (e.g. 1) [9] and
Schrock (e.g. 2) [10][11] using a thermally
induced Ha-abstraction reaction for the
carbene formation. Other efforts have been
directed to the synthesis of metal-carbon
double bonds by ring opening of cyclopro-
pene [12] or using carbene-transfer reac-
tions from phosphoranes [13].

Complexes of type 1are five-coordi-
nated, whereas those of type 2 contain
large ligands which protect them from
inter- or intramolecular decomposition
reactions. The catalytic activity towards
linear olefins is in both cases dramatically
decreased when stronger lr-donating alkox-
ides are introduced, e.g. W(=CHCMe3)(=
NAr)(OR)2 with OR = OCMe(CF3h is
very active with cis-pent-2-ene, where as

Scheme 4

Scheme 3
In contrast to the high oxidation-state

early-transition-metal carbenes, Ru- and
Os-catalysts possess a remarkable toler-
ance to most functional groups including
protic species such as water and have,
therefore, attracted much attention over
the past seven years [20]. This extraordi-
nary stability to water displayed by nor-
mally highly reactive organometallic in-
termediates (metal carbenes and metal-
lacyclobutanes) suggests that the appli-
cation range of such catalyst systems
goes far beyond the classical application
range of olefin-polymerization reactions.
Unfortunately, catalysts based on Ru
and/or Os salts, e.g. [RuCI3(H20h1 (4),
[Ru(II) (176-benzene)(H20h]tos2 (5), and
[Ru(H20)6]tos2 (6) (tos = p-toluenesul-
fonate), show normally a lower reactivity
compared to the early-transition-metal
carbene catalysts [211. It is shown that the
aqueous ROMP with these catalysts is not
a living polymerization since molecular
weights (Mw) and polydispersities (PDT =

LXM~C(H)R

UV light

1 wt% catalyst

3

M = early-transition-metal
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Scheme 6

Scheme 5Mw/Mn) were in the range 100000-700000
and 1.5-3.0, respectively, and almost in-
variable from the nature of the catalysts
and variation of the reaction conditions.
Yields depend strongly on both the mon-
omer and the catalyst concentration, are
difficult to reproduce and seldom reach
val ues above 80-90%. These observations
imply that both the carbene and the metal-
lacycle formations are rather unfavorable
and associated with a substantial activa-
tion energy (see Scheme 5). Therefore,
only a very small amount of active catalyst
is present at any time. The propagation is
fast in comparison with the initiation [21].

Very recently, R.H. Grubbs and cow-
orkers succeeded in preparing such a pos-
tulated carbene intermediate (starting from
phenyldiazomethane and [RuCI2(PPh3)3]
followed by a phosphine exchange reac-
tion). Even the synthesis of substituted
carbene complexes is possible via cross-
methathesis (see Scheme 6) [22].

These catalysts are highly reactive and
produce nearly monodisperse poly nor-
bornene. They fulfill, in contrast to Ru-
salt catalysts, the criteria for living sys-
tems.In addition to the high ROMP activ-
ity, 7 is also an efficient catalyst for me-
tathesis of acyclic olefins [22].

Table. Activity of Different Ruthenium Catalysts for ROMP and PROM P of9 a/ld 10 to form poly-
9 and poly-l0 [17]")

a) Monomer concentrations, 50-200 mg/ml; catalyst, ]wt% relative to monomer. h) Irradiation with
a 200-W-Hg lamp for 15 min prior to addition of monomer.

o. Cumpouml Thermal Ph 10 Quantum) idtl
aCli\lly a lh il .1» 0;. X 102

6 IRuIH,O)t>](to. )2 \cl) high

11 IRu( H1 )/>IIIOS, we,,!': high .5
5 t( (1~)Ru(l120hllt )1 medium high 1.4

12 I Ilc. amclh} Ilx:n7cnc)Ru(IIPhl(\(l\)~ very wc,,1.: \cl) weak

13 I( t>Hf>),Rullto\), nonc high 10

14 I( Ct>H/»Ru(me\lly lcne J I< 10~) none \\eak 7. '

IS II t>llb)Ru(biphcn} I) 1(10\)2 none \ cf"} high _.0

Late- Transition-Metal Photo-
Catalysts [17]

[Bis(arene)Ru(II)] and [Ru(NC-R)6F+
complexes belong to the most stable and
inert complexes known for di valent ruthe-
nium. In the absence of light [bis(are-
ne)Ru(II)] complexes are completely in-
active in ROMP and only few [Ru(NC-
R)6]2+ complexes show some very low
activity. If these complexes are irradiated
with UV light ROMP activity was ob-
served.

The Table shows results of compara-
tive studies on the activity of ruthenium
complexes in ROMP (thermal reaction)
and with irradiation ofUV light (PROMP)
reaction. For example a concentrated so-
lution of9 or 10 in EtOH containing 1% of
catalyst [(C6H6)Ru(biphenyl)]tos2 (15) is
almost quantitatively polymerized within
a few minutes upon irradiation with an
argon laser (364 nm, 150 mW) at 70°
(Scheme 7). The influence of light on the
initiation of the polymerization shows a
pronounced dependence on wavelength
with a maximal effect around 360 nm for
the sandwich complexes. Irradiation above
420 nm usually does not start the polymer-
ization reaction except for catalysts hav-
ing shifted their lowest-energy absorption
band into the visible region of the spec-

trum (e.g. 15). In general, irradiation into
the energetically lowest absorption band
of the catalyst precursor leads to very
efficient initiation.

The characteristics of the PROMP ac-
tivity are the same for [(1]6-a.rene)Ru(1]6-
arene)]2+ and [Ru(NC-R)6F+ complexes
and comparable to the thermal ROMP
reaction using [Ru(solvent)6]2+ complex-
es. The same is true for the polymer prop-
erties like the observed broad molecular-
weight distributions, the high molecular
weights, and the strong influence of the

initial starting concentration of monomer
on final yields [17].

Investigations by IH-NMR and UV
spectroscopy show that the photochemi-
cal activation of [bis(arene)Ru(lI)] com-
plexes by irradiation into the UV region
leads to solvation in two steps [23] (Scheme
8).

The so formed intermediate species
[(1]6-arene)Ru(solventh]2+ as well as the
fully solvated complexes [Ru(solvent)6J2+
are both ROMP catalysts for strained cyclic
olefins, with the former showing only mod-
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Conclusions
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Photo-induced Ring-Opening Metath-
esis Polymerization (PROMP), recently
discovered in our laboratories, and Ring-
Opening Metathesis Polymerization
(ROMP) are versatile tools for the prepa-
ration of a wide variety of speciality po]y-
mers. The catalyst systems discussed are
based on early- as well as on late-transi-
tion-metals. In general the former cata-
lysts are more active, but in contrast to
late-transition-metal catalysts they toler-
ate only nonprotic solvents and a limited
variety of functional groups.
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erate activity [17]. Therefore, the active
species is mainly related to the fully solvat-
ed complexes [Ru(solvent)6]2+. Irradiation
of unsymmetrical sandwich complexes of
the type [(7}6_C6H6)Ru(7}6-C6H6_n-Rn)]2+

where R is a a-donating substituent, selec-
tive]y leads to [(7}6_C6H6_,,-R,JRu(so]-
venthl+ complexes. Quantum yields for
fUl1her solvation of these complexes are
low and decrease sharply with increasing
number of substituents. Accordingly, a low
activity is observed for these complexes
(e.g. 12).

Also the ruthenium-nitrile complexes
like [Ru(NCCH3)6]2+ (11) in D20 show
upon irradiation a release of acetonitrile and
the formation of [Ru(NCCH3)6_.JD20)xl2+,
as seen by 1H-NMR spectroscopy. A rough
estimation of the quantum yield for this
photochemically activated ligand-ex-
change reaction gives a value of 0.05 which
is comparable to quantum yields for the
photochemically activated solvation proc-
ess in sandwich complexes.


