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About Bases and Superbases
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idation of the intermediate, to afford un-
dec-2-ene-l, II-diol followed by its con-
version into the diacetate and eventually
by a Cu-catalyzed reaction with propyl-
magnesium bromide to replace selective-
ly the allylic AcO moiety [9]. The (VE)
ratios are generally situated in the range of
94:6 to 98:2. The endo/exo equilibrium
ratios of allylic organopotassium species
are even more pronounced when the latter
carry a branching alkyl group at the 2-
position. Thus, exclusively the natural (Z)-
isomers of a-santalol [7] and other ses-
quiterpene alcohols [10] are formed when
the corresponding hydrocarbons are con-
secutively treated with LIC-KOR, fluoro-
dimethoxyboron and H2D2 (Scheme 2).

The superbasic LIC-KOR mixture
combines two seemingly irreconcilable
features of reactivity: power and selecti-
vity. The latter property proves to be ex-
tremely valuable in the area of 'ortho-
directed' arene metalations [11]. A het-
erosubstituent as present, e.g., in fluoro-
benzene, anisole or N,N-dimethylaniline
can facilitate a hydrogen/metal exchange
either by acidification due to inductive
electron withdrawal or by coordination of
the reagent through its metal atom [12].
While plain or N,N-tetramethylethylene-
diamine-activated BuLi ('LIC' and 'LIC-
TMEDA', resp.) are mainly sensitive to
the latter effect, the polar alcoholate acti-
vated organometallics optimally exploit

the latter, the more rapidly they become
prey to a-metalation and j3-elimination
processes. Both modes of degradation
should be completely suppressed if the
etheris replaced by an alcoholate. t-BuOK
and other bulky a1coholates were indeed
found to enhance the metalating power of
organometallic reagents to an unprece-
dented extent [2]. Characteristic examples
are the selective hydrogen/metal exchange
atthe cyclopropanic trans-position of nor-
carane with pentylsodium and t-BuOK
('NAC-KOR') in hexane (30% of acid
after carboxylation) [3], at the (E)-posi-
tion of camphene again with NAC-KOR
in hexane (71 % of aldehyde after treat-
mentwithDMF) [4][5], atthe(E)-position
of 3,3-dimethylbut-l-ene with pentylso-
dium and disodium pinaco]ate ('NAC-
NAOR') in hexane (88% of silane after
treatment with Me3SiCl) [3], at an olefinic
position of norbornadiene with BuLi and
t-BuONa ('LIC-NAOR') in THF (92% of
silane) [6] and at the allylic position of 3-
methylbut-l-ene with trimethylsilylmeth-
yl-potassium [4] or BuLi and t-BuOK
('LIC-KOR') in THF [7] (Scheme 1).

The deprotonation of 2-alkenes by the
LIC-KOR 'superbase' proceeds with par-
ticular ease. The 2-alkenylpotassium spe-
cies thus generated exhibit an unexpected
stereo preference for the (Z)-conformation
(the saturated chain being attached to the
endo-position of the allyl moiety) although
the (E)- or exo-isomer would be sterically
less hindered [8]. This curious feature can
be exploited for the stereoselective syn-
thesis of a variety of unsaturated com-
pounds [2], including pheromones. Thus,
(Z)-tetradec-9-eny] acetate, the sex attract-
ant of the female Spodoptera frugiperda
moth, can be prepared by O,C-dimetala-
tion of undec-l O-en-l-ol and subsequent
torsional equilibration, borylation, and ox-
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Abstract. Butyllithium requires activation in order to become capable of abstracting a
proton from weakly acidic hydrocarbons like cyclopropanes, simple olefins, or arenes.
The addition of a stoichiometric amount of potassium tert-butoxide is a most effective
means of enhancing the rate of a hydrogen/metal exchange process. The superbasic
alkyllithium/potassium alcoholate mixtures are endowed not only with an unsurpassed
reactivity but also with a surprisingly high selectivity as evidenced by a series of
optionally site-selective arene metalations.

Unlike cations, anions cannot exist as
free species (except for the esoteric ap-
pearance of a few individuals in the gas
phase). In protic media they prevail as
dissociated particles but are engaged in a
maximum number of H-bonds with sur-
rounding solvent molecules acting as the
donors. In aprotic and in particular ethere-
al media, the anion (halide, alkoxide, car-
bani de, etc.) combines with its counter-
ion (in general, an alkali metal) to form a
contact pair. The latter are present as mo-
nomeric entities only in exceptional cases.
The metal seeking a spherical electronic
environment uses the trick of sacrificing
covalent or electrostatic interactions in
favor of electron-deficient bonds, thus in-
creasing its coordination beyond its ordi-
nary valence number. Dimeric, trimeric,
tetrameric, hexameric, oligomeric, or pol-
ymeric aggregates are the result [1].

These molecular clusters are relatively
inert. To restore their intrinsic reactivity,
they have to be disentangled to monomer-
ic units. In addition, the bond established
between the metal and its more electro-
negative binding partner needs to be po-
larized. Both objectives can be partially
realized by employing a chelating solvent
(such as ethylene glycol dimethyl ether) or
complex and (such as N,N,N',N'-tetra-
methylethylenediamineor 1,4,7,10,13,]6-
hexaoxacyclooctadecane). Unfortunately,
neither ethers nor amines are inert enough
to resist aggressive organometallic rea-
gents: the more efficiently they activate
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Scheme 4boxylation 55 and 68% of the acids with
100 and 94% site selectivity, resp.) [17]
(Scheme 6).

Electronegative substituents accelerate
hydrogen/metal exchange processes at the
ortllO-position even if they are not directly
attached to the aromatic ring but rather
accommodated at a benzylic location.
Actually, N,N-dialkylbenzylamines [18]
and, to a lesser extent, N-lithium alkylben-
zylamides [19] and N-pivaloylbenzyl-
amines [20], are more rapidly attacked by
organometallic reagents thanN,N-dialkyl-
anilines are. These substrates present an
additional complication since the benzylic
CH2 moiety is also prone to deprotona-
tion. However, the appropriate choice of
the acyl protective group and, on the other
hand, of a complementary reagent allows
one to secure both reactivity and selectiv-
ity. Metalation at a position adjacent ei-
ther to the amidomethyl side chain or
another heterosubstituent (in particular, F
or Me) can be brought about at will in
practically all cases studied by simple
variation ofthe above mentioned parame-
ters [21].

A single F-atom in a benzylic position
is too labile to sustain the action of any
polar organometallic species. In contrast,
CF3 groups are remarkably inert and
strongly electron-withdrawing. Neverthe-
less, by all standards, it has the leastortho-
directing aptitude. Therefore, the hydro-
gen/metal exchange with O-methoxy-
methyl-protected 2- and 4-(trifluorometh-
yl)phenols or lithium 2- and 4-(trifluoro-
methyl)benzylalcoholates invariably oc-
curs at an ortho-position relative to the
O-containing function [22]. However, as
the meta-isomers reveal, CF3 has to
be considered as a fairly bulky substituent.
1-Methoxymethoxy- 3-( trifluoromethy l)-
benzene reacts with LIC-KOR (THF, 2 h,
-75°) at the 2-position (64% of product
trapped as the acid), but with LIS- TME-
DA (THF, 2 h, -75°) at the O-adjacent, F-
remote position (94% of the acid) [22].
Lithium 3-(trifluoromethyl)benzylalco-
holate reacts with LIC-KOR only at the
doubly activated 2-position but with LIC-
TMEDA indiscriminately at both 2- and
6-positions [22] (Scheme 7).

Also 1,3-bis(trifluoromethyl)benzene
shows a dualistic behavior towards LIC-
KOR (THF, 3 h, -75°) and, this time, LIS-
PMDTA (THF, 10 h, -75°). The interme-
diates can be trapped by carboxylation to
give the 2,6- and 2,4-bis(trifluoromethyl)-
benzoic acids (78 and 56%) [23]. A l: 1
mixture of 2,4- and 3,5-bis(trifluoro-
methyl)phenyllithium is produced with t-
BuLi in tetrahydropyran ('THP'). The lat-
ter intermediate can be selectively gener-

electronegativity dominated acidity gra-
dients (Scheme 3).

The mechanism-based matching of
neighboring groups with reagents can be
used to impose optional site selectivity on
the metalation of aromatic substrates car-
rying two heterosubstituents. When treat-
ed with 2 equiv. (the first being consumed
for the imine deprotonation) of t-BuLi
('LIT'), the meta-isomer of N-Boc-fluoro-
aniline is lithiated at the doubly activated
2-position. The intermediate loses LiF al-
ready at -75° [13][14], but may be inter-
cepted at-100° [15]. The ortho- and para-
isomers are deprotonated by LIT at the N-
adjacent positions (upon carboxylation
after 3 h at -50°, 86% and 80% of the
corresponding acids), while metalation
occurs artha to the halogen (42 and 36% of
the acids isolated), when t-BuLi activated
by tert-BuOK ('UT-KOR') is employed
[14] (Scheme 4).

Equally striking examples of optional
site selectivity are encountered with 2-
and 4-fluoroanisole. When treated for 50 h
at -75° with BuLi (UC) in THF, both
substrates afford, after carboxylation, 50%
of isomerically uncontaminated, fluori-
nated 2-methoxybenzoic acids [16]. How-
ever, when BuLi is activated with
N,N,N' ,N" ,N" -pen tameth yId ieth y lene-
triamine ('LIC-PMDT A') only MeO-sub-
stituted 2-fluorobenzoic acids (87 and 85%
upon carboxylation after 2 h at -75° in
THF) are obtained [16] (Scheme 5).

Fluorine and nitrogen (incorporated in
amino or amido groups) represent two
extreme cases of substituent interaction
with metalating reagents, displaying in-
ductive and coordinative effects, respec-
tively. These differences do not vanish,
but become attenuated when the two com-
peting elements move closer together in
the periodic table. It is getting more diffi-
cult to accomplish optional site selectivity
under these circumstances. This was al-
ready the case with the fluoroanisoles and
things get even more tricky when one
turns to N-Boc-protected anisidine deriv-
atives. However, even these can be in-
duced to exhibit full regioselective diver-
sity [17]. LIT in Et20 is attracted by the
coordinatively powerful carbamate func-
tion to afford, after metalation (20 h at
-25°) and carboxylation the corresponding
anthranilic-acid derivatives in 78 and 86%
yield (with 100 and 88% site selectivity,
resp.; the latter was improved to 100%
with N,N -dimeth ylcarbamoy I-4-anisidine
as the substrate). When LIC-KOR in THF
is used as the base, the MeO group can
deploy its stronger inductive effect and
metalation (20 h at -25°) is oriented this
time to the O-adjacent position (after car-
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ated from] -bromo-3,5-bis(trifluorometh-
yl)benzene by halogen/metal exchange
[23] (Scheme 8).

Any single halogen atom is more effi-
cient than the CF3 group in luring lithia-
tion to occur in its immediate vicinity as
exemplified by 2- and 4-fluorobenzotri-
fluoride [23] (metalation conditions: LIC-
KOR, THF, 3 h, -750

) and by 2- and 4-
chlorobenzotrifluoride [24] (LIC-TME-
DA, THF, ] h, -750). The corresponding
meta-isomers are metalated at the sterical-
Iy congested 2-position when slim rea-
gents (LIC-KOR and LIC, resp.) are em-
ployed, while bulkier bases (LIS-TME-
DA and LIS, resp.) attack the CFrremote,
F- or Cl-adjacent position [23][24]. Bro-
mo(trifluoromethyl)benzenes react with
any alkyllithium by halogen/metal ex-
change. Deprotonation can be accom-
plished using lithium 2,2,6,6-tetramethyl-
piperidide ('LITMP') at low temperatures
(THF, 2 h, -1000) [24]. The meta-isomer
affords exclusively 2-bromo-4-(trifluoro-
methyl)phenyllithium.2-Bromo-6-(triflu-
oromethyl)phenylJithiumcan bequantitati-
vely obtained at -750 by the spontaneous
isomerization of the lithiated species gen-
erated from theortho-isomer at-lOaD [24]
(Scheme 9).

The isomerization requires the pres-
ence of trace amounts of 1,2-dibromo-3-
(trifluoromethyl)benzene and propagates
itselfby repetitive halogen/metal exchange

Scheme 10

[24]. Similar 'halogen dance' processes
are known but, in general, give rise to
product mixtures [25] (Scheme 10).

2-Chloro-6-( trifluorometh yI)pyridine
is an aza-analogous l-chloro-3-(trifluoro-
methyl)benzene. By analogy (see above),
one might expect deprotonation to occur
cleanly at the 3-position. In reality, a 1: I
mixture of 3- and 4-lithiated species is
obtained upon treatment withLITMP [22].
The lack of site selectivity reflects the
exceptionally high intrinsic acidity of py-
ridines at the 4-position [26] (Scheme 11).

Nevertheless, it is possible to perform
selective substitutions either at the 3- or 4-
position of 2-chloro-6-(trifluoromethyl)-
pyridine, as desired. As a matter of fact, 2-
chloro- 3-iodo-6- (trifluorometh yI)pyridi-
ne, which is concomitantly formed with
the 4-iodo isomer by trapping of the orga-
nometallic intermediates with iodine, spon-
taneously isomerizes to the latter, sterical-
ly less hindered product, again employing
a 'halogen dance' mechanism [22](Scheme
12).
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