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Fig. 2. The uniform inclusion crystallization of random copolymers. The comonomers take part in
crystallization, and the morphology remains almost unchanged.
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with cocrystallization of random copoly-
mers usually assume a random distribu-
tion of the comonomers in the crystal [5-
7]. However, this assumption holds only
for the idealized case where the defect is
small enough as not to affect the arrange-
ment of neighboring chains. In general,
every defect (inclusion of a 'wrong' mon-
omeric unit) creates available volume in
the neighboring part of the crystal, making
additional inclusions at these positions
more likely then elsewhere. The deforma-
tion of the neighboring chains may be
small and compensated by small rear-
rangements of the polymer chains in the
surrounding of the defect without affect-
ing the long-range order of the crystal
when the two co monomers consist of con-
stitutionally identical units with different
configuration (e.g., i/a-PP) or of units dif-
ferent only in the length of a flexible side
chain (e.g., i-PP/but-l-ene or poly(t3-
hydro xyb utyra te- co- 13-hydro xy valera te
(PHB/HV)).

The misfit created in chains of non-
flexible units of rigid main-chain poly-
mers by units of different length much
stronger affects the crystal conformation
and crystallization Gibbs energy, because
it can not be compensated for within a
small and localized region of the crystal. A
popular example for rigid main-chain ran-
dom copolymers is poly(hydroxybenzoic
acid-co-hydroxynaphthoic acid) [8]. This
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Fig. 1. The exclusion crystallization of random copolymers. Increasing amount of comonomers
reduces the average homopolymer sequence length g and lamellar thickness, resulting in a strongly
decreased degree of crystallinity at.

zation may occur for the whole range of
copolymer composition. The limit of uni-
form inclusion, where the concentration
of the comonomer in the crystal is the
same as in the entire copolymer, is dis-
played in Fig. 2.

Up to now, the crystallization of ran-
dom copolymers of this type is not well
understood. Theoretical models dealing

Chimia 52 (1998) 607-612
© Neue Schweizerische Chemische Gesellschaft
ISSN 0009-4293

Introduction

*Correspondence: Prof. V.W. Suter
Department of Materials
Institute of Polymers
Vniversitatstrasse 6, CNB E9].2
ETH-ZUrich
CH-8092 ZUrich

Random copolymers are widely used
in materials development to tune their
properties, such as the melting tempera-
ture or the convenient processing temper-
ature. Introducing, e.g., some ethylene or
methylene units randomly into isotactic
poly(propylene) (i-PP) promotes the for-
mation of shorter, stereoregular blocks (of
length ~) and results in a linear depression
of the melting point by almost 5 K per wt.-
% of the comonomer [1]. Higher amounts
of random comonomer inclusions reduce
the probability of homopolymer sequenc-
es long enough to crystalIize sufficiently
that the material is obtained completely
amorphous (Fig. 1).

The thermodynamic theory of crystal-
lization of this type of copolymers, where
the guest comonomers are excluded from
the crystallization of the host polymer,
was first discussed by Flory [2] and later
augmented by Baur by a more phenome-
nologic theory [3][4] that fits the experi-
mental data better than the Flory model.

A different type of crystallization is
observed for some copolymers where the
comonomers can be included into the crys-
tal of the host polymer. Depending on the
amount of comonomer included, the melt-
ing temperature is also reduced (albeit less
than for the exclusion case), and crystalli-

Abstract. The defect Gibbs energy of hydroxyvalerate comonomer inclusions into the
crystals made up by random copolymers of poly(P-hydroxybutyrate-co-p-hydroxyva-
lerate) (PHB/HV) is calculated by means of the thermodynamic integration approach.
The result obtained for a single inclusion is in excellent agreement with those obtained
by fitting experimental melting temperature and cocrystal composition data. On
decomposing the Gibbs energy, it is found that the crystallization entropy contributes
the dominant part of the defect Gibbs energy. Our calculations on multi-inclusion
crystals show that the Gibbs energy strongly decreases when the comonomers aggre-
gate in a preferred pattern. Further information to the design of isomorphic copolymers
is obtained from these calculations.
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Fig. 3. Excess Gibbs energy/RT as obtained from experiment for random copolymers of PEN/T
(poly( ethylene 2,6-dicarboxynaphthanoate-co-terephthalate)) [18], PHB/HV (poly(~-hydroxybu-
tyrate-co-~-hydroxyvalerate) [II], iJa-PP (stereo regularity defect in isotactic poly( propylene)) [19],
and i-PPlbutene-] (isotactic poly(propylene-co-butene-1)) [20], compared to the theoretical value
given by Baur's copolymer exclusion theory [4]
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X B is the concentration ofB units in the
polymer and In (1- XB) equals the collec-
tive activities of A sequences in the limit
of the upper bound of the melting temper-
ature. Tm 0 and Hmo denote the homopoly-
mer equilibrium melting temperature and
heat of fusion, respectively, and R is the
gas constant.

The probability of finding those crys-
tals is very low, leading Kilian [3] and
Baur [4] to develop a phenomenologic
theory of copolymer crystallization based
on the behavior of eutectic mixtures. The
basic idea is that the homopolymer se-
quences of length ~ may only be included
into crystals of lamellar thickness corre-
sponding to that length. The melting tem-
perature is then given by

where(~)= [2· XB(1-XB)]-1 is the average
length of homopolymer sequences in the
melt [4]. This model, while incorporating
finite crystal thickness and the concomi-
tant depression in the melting point, still
neglects that the homopolymer sequences
are invariably fixed in chains due to bond
connectivity; the eutectic equilibrium,
which requires total separation into the
'components' (the homopolymer sequenc-
es of same length ~), is unrealistic. How-
ever, it was shown by several investiga-
tions [4][10] that the Baur model (Eqn. 2)
fits experimental data much better than the
Flory equation (Eqn. 1) [2].

Inspection of experimental data shows
readily that comonomer exclusion alone
cannot account for the observed melting-
point depression in many cases. In Fig. 3,
we plot the experimental excess crystalli-
zation Gibbs energy (obtained as Hmo /
RTm . (1 - Tn/T m0)) together with the
corresponding theoretical values (calcu-
lated as In (1 - XB) - (~)-I in case of the
Baur model) as a function of copolymer
composition. In case of PEN/T and PHB/
HV copolymers, the experiment and Baur
model match the data at low comonomer
composition, indicating that the comono-
mer exclusion model may hold in this
range of composition. However, beyond a
certain composition, the experimental ex-
cess Gibbs energy is lower for these copol-
ymers, and for copolymers of i-PP, exper-
imental values are always lower than those
obtained by the model. Exclusion theories
do not account for these observations,

I I R
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Thermodynamics of Copolymer
Crystallization

The kinetic and equilibrium aspects of
copolymer crystallization have been ad-
dressed by a number of authors [2-7]. The
idea behind using equilibrium thermody-
namic is based on the assumption that,
considering a copolymer of two comono-
mers A and B crystallizing in the crystal
lattice of A, the comonomers B may either
be excluded from the crystals or act as
defects in the crystal. In both cases, the
Gibbs energy of the crystal will increase
and the melting temperature decrease. In
the following, we address exclusively ran-
dom copolymers, i.e., copolymers with a
Bernoullian distribution of monomer se-
quences.

The case of comonomer exclusion in
thermodynamic equilibrium was first de-
scribed by Flory [2], who calculated the
upper bound of the copolymer melting
temperature, i.e., the melting temperature
of crystals built up from 'infinitely long'
homopolymer sequences of units A in the
copolymer. Flory found the melting tem-
perature equation:
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Fig.4. ThePHB/HVcopoly-
mer

copolymer does not crystallize, but exists
in the nematic liquid-crystalline state.
However, crystallization of these copoly-
mers is conceivable when the chains ar-
range by selection of similar and match-
ing, yet random segments of the chain [9].
The probability of finding those matches
is not too small, but it is uncertain whether
these aggregates can reach the minimum
size of thermodynamically stable crystal
nuclei. The high molecular rigidity also
might be limiting the chain mobility re-
quired for the constitutional matching of
sequences.

In the first part of this paper, we dis-
cuss the theoretical background of copol-
ymer crystallization and apply the crystal-
lization model to experimental data. Here,
the crystallization will be discussed in
terms of the defect Gibbs energy, which is
the energy required to replace one repeat
unit in the crystal by a comonomer unit.
The second part presents atomistic force-
field simulations that gain more informa-
tions on the thermodynamics and confor-
mation of the cocrystallization of random
copolymers.
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hence, comonomer inclusion is to be con-
sidered in melting-point prediction.

At least, one additional parameter, the
defect Gibbs energy of a comonomer in-
clusion, is required for models dealing
with comonomer inclusions. Models that
consider the possibility of comonomer
inclusions were first discussed by Helfand
and Lauritzen [5) and by Sanchez and Eby
[6]. They assumed that the defects are
randomly distributed in the crystal and do
not interact with each other, so that they
could be described by a mean defect Gibbs
energy E (E ~ 0).

Sanchez and Eby found that the melt-
ing temperature can be described by:

Assuming equilibrium comonomer in-
clusion, where XeB is given by the Boltz-
mann weight of E, Eqn. 4 reduces to

with

(~)-I= 2 eXe - Xe . e-f/R1) (I - Xa + Xg . e-f/RT

n w m del, quilibrium) ( )

(7)

R E· X B + (l _ X B) . In
RTm

+X B' Ln~ 3)XB

Fig. 5. Experimental equilibrium melting temperatures TO",ys. copolymer composition. The lines
display the expected melting temperatures depending on the cocrystallization model (see text). The
data points are taken from Orts, Marchessault, and Bluhm [11].
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XB is the overall concentration of B in
the melt and XeB the actual concentration
of B in the cocrystal that is largely deter-
mined by the kinetic conditions of the
crystal formation. f (XeB) is the average
defect Gibbs energy required to replace
one repeat unit in the crystal by a comon-
orner and depends, in general, on the con-
centration of included comonomers, f =
e(XeB)·

The behavior at E » 0 is the principal
shortcoming of the Sanchez-Eby model:
when E is too high to allow cocrystalliza-
tion, Eqn. 3 reduces to Eqn. 1 of the Flory
model, but it should preferentially con-
verge to the Baur model, Eqn. 2. We
achieved a more general melting-temper-
ature equation for copolymers in a frus-
trated thermodynamic equilibrium follow-
ing the derivations of Flory [2], Baur [4],
and Sanchez and Eby [6]. Without going
into details that are described elsewhere
[7], the melting temperature is now given
as:

R f· B I - XeB X B -
--- - -----. ---+(l-X B)·ln---+XeB ·In-+ (~II
Tm( B) Tmo HmO RTm 1-XB XB

where (~)-Iis found in analogy to Baur's
approximation, treating the fraction XeB
ofB units that are cocrystallizing as if they
were units of A, as

~\-1 - -'~ =2·(XB- X B)·(I-XB+X B)

~ r - ::; B and 0 el. e (5)

whereXeB =XeB· (I-XB)/(I-XeB) is the
concentration of B units (with respect to
the entire copolymer) that are included
into the crystal. Notice that the concentra-
tion XeB is related to the crystal only.

(ne m del) 4)

Comparison to Experimental Data

We tested our model on several copol-
ymers, but we will focus here on the ran-
dom copolymer of poly(,B-hydroxybu-
tyrate-co- ,B-hydroxyvalerate), PHB/HV
(Fig. 4).

A set of experimental data for the equi-
librium melting temperature of PHB/HV
copolymers was recently published by
Orts, Marchessault, and Bluhm [11]. The
authors crystallized copolymers at differ-
ent melting temperatures and extrapolated

their data for Tm with inverse lamellar
thickness to infinite lamellar (crystal) size.
The so-obtained equilibrium melting tem-
peratures Tm° are plotted in Fig. 5. The
crystal HV concentration Xev was deter-
mined by VanderHart, Orts, Marches-
sault, and Bluhm by means of solid-state
13C-NMR spectroscopy [12] and small-
angle X-ray scattering [13]. Both investi-
gations revealed that the amount of HV
units that are included into the HB crystal
increases with increasing HV concentra-
tion in the copolymer.

These melting temperatures and crys-
tal composition data are used to calculate
an experimental estimate of the defect
Gibbs energy based on the different mod-
els described above. An illustration of
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these models for the PHB/HV copolymer
is already given in Fig. 5. The dashed line
corresponds to the complete exclusion of
comonomers due to a sufficiently high
defect Gibbs energy (which is equal to the
Baur model, Eqn. 2), whereas the thin
lines correspond to the equilibrium inclu-
sion model, Eqn. 6, using different esti-
mates for the defect Gibbs energy. As the
melting temperatures at HV concentra-
tions of 0.17 and 0.21 exceed the predic-
tion of the exclusion model, some cocrys-
tallization must occur at these concentra-
tions.

Table 1 gives the defect Gibbs ener-
gies obtained by the different models; the
differences make clear that knowledge of
the real crystal composition is of great
importance. An estimate for Xv = 0 is
obtained by linear extrapolation of the
experimental data for XeB towards zero
concentration which yields <l> = 17.8 kI/
mol.

These models, however, give no in-
sight on the detailed crystal morphology.
To gain more information, force-field com-

puter simulations were performed to cal-
culate the defect Gibbs energy for single-
and multi-inclusion copolymer crystals.

Simulation of Comonomer Inclusion
Gibbs Energies

For the assessment of the inclusion of
a single comonomer unit into a homopol-
ymer crystal, the problem to be treated
computationally is the transformation from
a system at state). = 0 (a homopolymer
single crystal of the host polymer plus one
individual chain with a comonomer unit,
somewhere outside) into a system at state
). = 1 (a copolymer crystal that includes
one 'defective' chain plus one host-
homopolymer chain unit outside). This
'reaction' (Fig. 6, a) would be governed
by the excess Gibbs energy E, usually
called the single inclusion defect Gibbs
energy. The approach that is more conven-
ient to molecular dynamics (MD) calcula-
tions is the thermodynamic integration
approach that estimates only the energy

difference of the two states by slowly
transforming the system from state).= 0 to
).= I (Fig. 6, b). Crystal and single co-unit
are transformed independently, but the
sum of both calculations gives the Gibbs
energy difference corresponding to the
exchange reaction. During the transfor-
mation that is described in detail in [14],
the derivati ve of the systems Hamiltonian
with respect to the state of transformation
described by ). must be calculated and the
transformation Helmholtz energy (in an
NVT ensemble) is then obtained by inte-
gration as [15]:

I aH (A)
MoI =II--- ;.d}. ( )

o oJ.

For further analysis, the Helmholtz en-
ergy was divided into an enthalpic and an
entropic contribution as follows: the inter-
nal energy of defect inclusion was calcu-
lated as the total energy difference be-
tween the defective and the defect-free
microstructure, i.e.,

Table I. Values of the Average Defect Gibbs Energy <E>: Calculated from experimental melting
temperature and cocrystal composition data, compared to those obtained from the uniform inclusion
and equilibrium inclusion models.

0.04 0.016 455

0.08 0.023 -t 9
0.17 ()'o97 427

0.21 0.119 426

xpcnmenlal alues 111-1

As experimental results usually are
obtained at constant pressure conditions,
the calculated Helmholtz energy needs to
be transformed into Gibbs energy for com-
parison. We approximate the Gibbs ener-
gy difference LlGO-+1 by adding the me-
chanical work (approximated by the mean
pressure-energy change p L1V) to Mo-+ I
from the thermodynamic integration re-
sults .

For all discussions in this paper on the
HB ~ HV transformation, a value of the
coupling parameter). = 0 corresponds to
the HB structure of the repeat unit under
transformation, whereas a value of A = I
corresponds to the HV structure. We con-
sider the configuration at A = 0 as the
starting point of the thermodynamic inte-
gration and the configuration at A = 1 as
the finishing point.

!HI = (EQ.-l)- o-+I)/T 10

Gibbs Energy of Single Comonomer
Inclusion

A PHB/HV microstructure is shown in
Fig. 7. One HB repeat unit is already
replaced by a HV unit and labelled with

The values were taken from 50 ps
NVT-MD calculations of the microstruc-
tures before and after the thermodynamic
integration calculations were performed.
The entropy change on defect inclusion is
then given by

-
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Fig. 6. Concept of the defect
inclusion procedure. a) The
direct exchange of one host-
polymer repeat unit by one
guest unit; this exchange is
characterized by the defect
Gibbs energy e. b) The com-
putational treatment of this ex-
change where the crystal and
the single unit are transformed
independent! y.
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'1'. We transformed this unit to HV by
thermodynamic integration.

The integration utilizing the trapezoi-
dal integration scheme is illustrated in
Fig. 8, and the integration results are listed
in the first line of Table 2. After correcting
for the mean mechanical work, the Gibbs
energy difference between the defect cre-
ation in the PHB crystal and the PHB
chain is found to be 16.5 kllmol, which is
quite close to the estimate from experi-
ments given in the previous section ofthis
paper and within the range of uncertainty
of these estimates. The further analysis of
our data makes clear that this Gibbs ener-
gy difference is dominated by the confor-
mational entropy; investigating cocrystal-
lization by calculating the defect energy
L1E only would suggest, if available as the
only piece of information, the misleading
interpretation that cocrystallization is ther-
modynamically favored as soon as the
assumption of independent defects is giv-
en up. The data for T,1S given in Table 2
demonstrate that indeed the crystalliza-
tion entropy dominates the Gibbs energy
of comonomer inclusion and that its influ-
ence may not be neglected.

Defect Aggregation
In order to evaluate possible interac-

tions between defects, the Gibbs energy
calculations were now extended analo-
gously to several defects in a microstruc-
ture. In particular, we focused on the ques-
tion in how far the aggregation ofHV units
could lower the mean defect Gibbs ener-
gy.

A second HV defect was incorporated
close to the first one (defect concentration
of 1.5%); since there are two crystallo-
graphically distinct monomeric units in
the unit cell, both of these positions were
tested with the next unit cell in each of the
principal cell directions.

The selected positions for this addi-
tional HV units are labelled in Fig. 7: The
defects 'ai" 'a2" 'bl', 'b2' are located in
the (h k 0) plane of the microstructure
(taking the position of '1' as (0 0 0), see
Table 2 for exact positions), whereas de-
fects 'CI' and 'C2' are the next and the
following possible positions in the same
chain as defect 'I'. Gibbs energies for
these defects are listed in Table 2. All
features of the simulation of single de-
fects, described above, apply also to the
structures with two defects. It is obvious
that the HV units at positions 'a]', 'bl',

and 'c I' produce a defect Gibbs energy
similar to the energy of the first HV inclu-
sion, whereas the units at positions 'a2',
'b2', and 'C2' give an average defect Gibbs
energy that is on average 13% lower.

-)y

This is in contrast to investigations of
Kamiya et al, [16] who surmised decreas-
ing average defect Gibbs energies when
diads HV-HV are included into the crys-
tal. Based on our calculations, triads of
type HV-HB-HV would have to be re-
sponsible for the decrease of E. This
behavior may be explained by a simple
argument: a defect included at one posi-
tion deforms the surrounding crystallat-
tice. A second defect far away from the
first has its own deformation domain and
gives rise to a defect Gibbs energy similar
to that of the first defect. A second defect
very close to the first one (inside its defor-
mation domain) faces a defective lattice to
deform that contains the additional CH3
group in its deformation domain and hence
gives rise to a similar defect Gibbs energy
than the first defect.

That is the case for the defects at posi-
tions 'ai" 'bl', and 'CI' (see Fig. 7). How-
ever, if the second defect is located outside
the deformation domain of the first one,
but these domains overlap and cause dis-
placements in the same direction, then the
second defect benefits from the work of

Fig. 7. Sketch of the PHS
microstructure. This box con-
tains 16 chains with 8 repeat
units each (32 crystallograph-
ic unit cells). One HV repeat
unit is incorporated and la-
belled with 'I'. Other labels
indicate the positions where
further defects will be creat-
ed: the defects 'a)', 'a2" 'hi"
and 'bz' are located in the (h k
0) plane of the microstructure
(taking the position of '1' as
(000», whereas defects 'Cl'

and 'cz' are located at (0 0
1/2) and (00 I), respecti vely.

deformation done by the first one, leading
to synergistic effects that lower the aver-
age defect Gibbs energy of this pair. This
may explain the lower defect Gibbs ener-
gy at positions 'a2', 'b2', and 'C2" These
defects are oriented similarly as '1' re-
vealing similar orientations of the aniso-
tropic deformations domains, whereas the
other defects ('ai', 'bl', and 'CI') produce
deformation domains with different dis-
placements.

Extension to Higher Comonomer
Concentrations

Based on our Gibbs energy calcula-
tions, a stronger decrease of the average
defect Gibbs energy seems possible when
the number of aggregated HV units in-
creases, enabling higher degrees of co-
crystallization. Unfortunately, the large
variety of possible aggregates makes Gibbs
energy calculations based on the thermody-
namic integration approach impossible.
However, lattice calculations based on
nearest-neighbor interactions might give
a good estimate on the possible behavior.
We chose a finite cubic lattice with von
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Table 2. Values (per Defect) of the Helmholtz and Gibbs Energy Change Calculatedfor the Inclusion
of One or Two ~-Hydroxy-valerate Defects into a PHB Crystal at T = 300 K. Defect Gibbs energy L1G
is obtained from Helmholtz energy .1A after correcting for the mean mechanical work. The internal
energy change .dE is taken from NVT calculations before and after defect inclusion. The average
numbers are calculated for the double inclusion results only. The statistical errors in the calculations
of.1A and L1Gare in the range of 1.6 kJ/mol.
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[8]

[9]

[10]

[II]

[12]

[13]

-200
o

::t:: -100
('0
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rcmcd PO'llIon of 2nd
Defect

r.lll no.! c rd.

I 0 0 0
(I +01 O. 3 0.3 0.5_
(I + 02) 1 0 0
II+ bl) -Q.49 -0.2 -0.22
(I + b,) -0.16 -0.5 0.2
(I +<',) -n.66 0.30 0.5
(I + (2) 0 0 I

Neumann interactions. Hence, each lattice
site has six interacting neighbors, two in
each principal direction. Following the
results of the thermodynamic integration
approach for two defects, in our model, we
only consider the interactions of a test
lattice site with units on positions in the
direction of the positive axes, (i.e., 'a2',
'b2', and 'C2'). Interactions to units in the
other positions ('aI" 'bl', and 'Cl') are
ignored because the changes of eare small-

Fig. 8. The thermodynamic
integration result for a sin-
gle HV inclusion in a PHB
microstructure. See also
Table 2.
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Fig. 9. Simulation micro-
structure of a PENtT crys-
tal where the middle layer
perpendicular to the image
plane has already been
transformed to ethylene
terephthalate


