
INTERNET - WHERE IS CHEMISTRY GOING? 668
CHIMIA 52 (1998) Nr. II (November)

Anatoli Krassavine*

Chimia 52 (1998) 668-672
© Neue Schweizerische Chemische Gesellschaft
ISSN 0009-4293

Java and JavaBeans for
Cheminformatics

Abstract. The usability of standard HTML pages for the display of inherently often very
graphical chemical information is severely limited, especially with respect to interac-
tive manipulation of the displayed data. This is where simple images, the lowest
common denominator, fail. There is a definite need for a portable and flexible
mechanism for the graphical display and manipulation of chemical information in a
WWW context. We believe that Java, especially the JavaBeans framework, which
supplies a powerful paradigm for the communication between multiple processing
tools, is a very suitable technology to solve these problems. In this contribution, we
illustrate the design and use of the ChemSymphony JavaBean suite as an example of
this technology.

can be connected directly to any other
JavaBean or indirectly to any other infor-
mation source or computational program.
On the right is another GUI component
which allows the user to alter properties
which may have some effect on the way
the molecule is represented or rendered.
But note that the components are connect-
ed by an arrow and a horizontal message,
a 'method' which engages the Property-
Change event.

The essential strength of the JavaBeans
technology is that there is a standard 'event
model' with its own logic which allows
the behaviour of individual components
to be interconnected. ChernSymphony
relies heavily on this infrastructure. We do
not need to know too much about the
internals of 'foreign' Beans, provided that
they have been written to the Java stand-
ards defined by Sun Microsystems. In
thinking about what Beans 'look like', it is
more important to consider the abstract
ways in which they can be connected
together. Here is a diagramatic view of
several connected Beans (Fig. 2).

This was an early design for an inter-
face to the Beilstein database. It uses six
ChemSymphony Beans and four generic
Beans from Sun. The layout of the design
gives an idea of the 'logic' which the
application embodies and also how easily
different applications can be adapted one
from another.

It also illustrates how simple it is to
adapt the modular architecture of Chem-
Symphony to completely different tasks.
Lets consider the diagram above once
again. As drawn - it will connect to Beil-
stein database, suomit query, extract and
display hits and associated data. What if
you wish to adapt the very same Beilstein
interface to work with another system (an
Oracle Database or a Daylight system)?
Well roughly speaking, you would like to
keep the same general application skele-
ton. You could use the same sketcher for
submitting query, the same display to dis-
play resulting structures, the same buttons
to control data flow ... The only difference
is you want to connect to another database
- so you have to substitute the Beilstein
adapter with an adapter specific to the
database of your choice. It is made easier
due to the fact that aside from a few
specific controls, all the database adapters
share the same basic public interface, an
example of which is shown below (In the
diagram, we can compare lists of inputs
and outputs between Beilstein and NCI
adapters; Fig. 3).

So we drag the Beilstein adapter Bean
off the design and replace it by the Bean
that handles Oracle or Daylight databases.

The Basics of ChemSymphony Beans

The one-sentence definition of Java-
Beans is: Java software packaged as com-
ponents which can beplugged together to
build programs (applications or applets).
The one-sentence definition ofChemSym-
phony Beans is: a suite of JavaBeans
which offers a tool kit for chemistry In-
tranets and provides most of the most
commonl yused components that are need-
ed for building chemistry programs. Since
this is a construction kit, it is to be expect-
ed that ChemSymphony components will
be incorporated in quite specialised pro-
grams and used for projects which are
much more sophisticated than the original
designers will have considered possible.

The core resource of the suite is the
common data model which all the Chem-
Symphony Beans share. This is probably
the most unusual feature of ChemSym-
phony Beans. We have not noticed in any
neighbouring field, a component collec-
tion of Beans which has been built sharing
a common data model and with a common
architecture. Butthe underlying data mod-
el is not what people notice when they are
first introduced to these Beans. What most
people notice is 'what the Beans look
like'. So we will start with this. In fact,
there are several ways oflooking at Chem-
Symphony Beans, and the initial view is
usually of the OUI components. This is
what two Beans look like (Fig. 1).

On the left is a component which lets
you render a molecule in three dimen-
sions. Its functionality is similar to Ras-
mol or Chime, but it is a JavaBean, so it

When I first conceived ChemSympho-
ny, my intention was to develop a system
for publishing chemistry models and mo-
lecular representations on theWorld-Wide
Web. In its first iteration, ChemSympho-
ny was seen as having the potential to be
an essential tool for building web sites
with chemistry content. This was the basis
on which Cherwell Scientific agreed to
publish the suite in 1996. The general
challenge of de~eloping a modular system
which would represent chemical content
using a variety of legacy file formats en-
couraged the adoption of a flexible and
'open' data model which is well fitted to
many (not all) informatics tasks in chem-
istry. Java was essential to this vision of a
generic and cross-platform chemistry-pub-
lishing suite. In the last two years, Java has
evolved in ways which encourage abroad-
er ambition for ChemSymphony [1].

A most important improvement to the
Java standard was the introduction (with
JDK 1.1)of acomponenttechnology: Java-
Beans. These developments have encour-
aged us to develop a suite of basic chem-
istry components which can be used to
build solutions for the Internet, for corpo-
rate Intranets and eventually perhaps for
incorporation in a wide variety of devices
which are able to support Java Virtual
Machines.

*Correspondence: A. Krassavine
Department of Chemistry
Northern Illinois University
DeKalb, IL 60115, USA
E-Mail: toly@holly.chem.niu.edu



INTERNET - WHERE IS CHEMISTRY GOING? 669
CHIMIA 52 (1998) Nr. 11 (November)

Selection

Helix

Turn

B,ckground • B,ckground

Default atom

Default ribbon n
Fig. 1. ChemSymphony Beans as CUI components

Spreadsheet-ready Formatted Text Fllter1

8utton1

Sub mil to 8ellsleln database2 o

Save chemical tile1

ChemSkeicher2
Direction Button2 o

Dlrecllon 8utton1

Bellslein Hit Component Faclory1
Generic marquee dlsplay1

Fig. 2. ChemSymphony Beans connected in a design

Well, that's it. The new design is fully
and imm~diately functional.

A person intimately aware of the nu-
ances of working with different databases
might reasonably point out that different
database use different protocols to obtain
data, require queries in different formats

and, finally, output the data in different
formats, as well. So isn't it true that we
need to tweak all the connection and op-
tions accordingly?

Not at all. Thanks to the fact that all
components share the common interface,
such problems could be easily resolved in

run time and, most importantly, could be
resolved automatically between the com-
ponents themselves. For example, albeit
you might input substructures in the same
sketcher, Beilstein would require the struc-
tural query data to be converted into BSD
query, while Daylight or NCI would re-



INTERNET - WHERE IS CHEMISTRY GOING? 670
CHIMIA 52 (1998) Nr. II (November)

quire SMILES. The Sketcher, most defi-
nitely, is not aware of such nuances - but
fortunatel y, the database adapter does
know -, so it instructs the sketcher to pass
the data in the appropriate specific format
at run time.

Analogously, the display component
might not know what type of data any
particular database returns, but fortunate-
ly, the database adapter does know and
informs the display about the available
options.

All this is resolved at run time during
inter-component interactions and techni-
cally does not require user interaction. But
for the expert users, there is a backdoor -
a second line of programmable interfaces,
which allows him to specify the exact
formats he wishes for data transfer or to
tweak any data exchanges he needs to
override.

Essentially the idea is that components
could and should solve the details of par-
ticularities of data transfer and data for-
matting in run time, leaving the user to
solve more intelligent tasks.

Some of the ChemSymphony Beans
are GUI components which gives us a nice
impression of what the suite can do. Argu-
ably, a deeper understanding of the tool kit
comes from considering the designs or the
blueprints for different applications. But,
as we have several times hinted, the core
of the suite is something that one really
does not see: the data model.

All the ChemSymphony Beans share a
data model and common data exchange
interfaces. This is an important point and
it bears on another issue that newcomers
can find confusing in JavaBeans. We have
talked about JavaBeans as components, as
free-standing code units. They are this, but
we need to be careful in the way we think
of theBeans ascompletely individual com-
ponents. JavaBeans need the Java envi-
ronment. They require the Java Virtual
Machine and the 'Event Model' which
comes with JDK 1.1. In a somewhat anal-
ogous fashion, the ChemSymphony Beans

need the underlying event model to effec-
tively communicate with each other and
underlying chemical data model to effi-
ciently manipulate the data.

The ChemSymphony data model has
evolved, and its implementation will con-
tinue to be improved. An important early
decision was to build the data model from
general abstract considerations of molec-
ular structure, rather than relying primari-
lyon any particular data file format.

For communications with the outer
world, ChemSymphony uses a number of
'input/output filters' and 'data source
adapters' .

All filters and adapters, of which we
will talk in more detail below, are dynam-
ically linked objects. This means that a
developer can write his own filter/adapter
to cover his particular data needs, and he
will be able to seamlessly incorporate it
into the system. All the interfaces/proto-
cols needed for writing such a code are
made public as well as some simple anno-
tated code examples. ChemSymphony
provides several levels of interfaces, de-
pending on how much time/resources one
wants to spend on programming. Again,
there is a trade-off between ease of use and
flexibility for adaptation. Deeper levels
offer more complex interfaces which offer
a developer more control over both input
and output at the price of requesting more
complex code from the developer.

Once compiled, the particular details
of deployment will differ depending on
the IDE/environment one is using, but in
some environments, it is as simple as drop-
ping the compiled code into a predefined
directory. ChemSymphony will automat-
ically detect the presence of new classes,
identify the relevant properties and incor-
porate it into the system.

It is useful at this stage to say a little bit
more about the particular differences be-
tween filters and adapters. The task of a
filter is to take a piece of data in the form
of a flat file, an object or another stream-
lined piece of data, and map it in onto the

internal data model. Equally, the filters
should be able to reverse the process: to
compile a presentation of internal data
into the standard output data format. Gen-
erally, filters operate with a stream of
incoming data. As such, they operate in a
somewhat ideal world, where somebody
else takes care of where the data really
reside. Filters have no idea where this
stream has come from or whether any
special activities are needed to keep data
coming. This is not their job, but it is the
job of adapters.

Data source adapters are operating with
the outer world. Their task is to connect to
aparticular data source, request data, iden-
tify the returned data type, open and main-
tain the connection until all the nessesary
data are dumped into an appropriate data
filter, etc. 'Data source' is our general
term in ChemSymphony, by which we
understand any external source of chemi-
cal data, including - but not limited to -
disk drives, network servers, database en-
gines, clipboards, computational packag-
es and such.

Instead of requiring the outer world to
comply with a specific protocol or inter-
face, ChemSymphony is surrounded by
shields of autodetecting, customised adapt-
ers (we use the word 'adapter' analogous-
ly to the electrical adapters which con-
nects your laptop/hair dryer to the electric-
ity source in different countries). Each
adapter has two sides. On the inside, it
supports the common ChemSymphony's
interfaces. On the outside, it supports
whatever protocol this particular data
source reqUIres.

Different adapters are needed for han-
dling each specific data source, but since
they are in effect black boxes, the develop-
er can easily swap them or swap the appli-
cations to which they are connected (the
adapter which connected a Beilstein 'data
source' to avisualisation application could
be connected directly to a calculation bean
if it is clear that the chemist who is using
Beilstein wants to use the results of search-

tllglJ -

a b ortNI\Dotatlaso

WalsAlborllcdD Toli oul abortlmmoE!diat "abortNlc<!~'
•• .rtlmm dia ~,

tn

Submit to Beilstein database1 Submit to NCI database1

Fig. 3. Lists of inputs and outputs between Beilstein and NCI adapters



INTERNET - WHERE IS CHEMISTRY GOING? 671
CHIMJA 52 (1998) Nr. I I (November)

Vertex List

Bond List o 1 2 4
"<:QLder~

GenericChemModel md = new GenericChemModel();

II mark all those atoms as selection group '2'
md.select(ns, 2);

Vector ns ~ new Vector();
I I will locate all the ni trogens inside the chemical model
and append them to the vector
I I this is one of the methods which simplifies matters for
the user
md.pickUpProperty(ns, 'name', 'n')
II this will locate all the sulfurs inside the chemical
model and appends them to the Vector
md.pickUpProperty(ns, 'name', '5')

Fig. 4. Schema for the ChemSymphony data model

es in calculations). We claim that it is a
strength of the approach that through its
modular adapters and filters ChemSym-
phony can 'learn' more about chemistry
and molecular formats. This can be done
by amending existing filters or by adding
new filters.

Once the particular data source has
been connected and the raw data were
extracted by one adapter or another, and
after the raw data has been routed through
the appropriate filter to get them into the
system, the central data model itself comes
into play.

ChemSymphony's internal data mod-
el, what we call its Generic Chemical
Model, is the engine at the core of any
ChemSymphony applet or application built
with the Beans. The idea was to create a
system for describing chemical structures,
which will be shared by all the compo-
nents inside the tool kit and any applica-
tions using the tool kit. Once this is done,
we have an efficient and flexible way of
transferring data inside the system. The
system for description is sufficiently ab-
stract to allow us to incorporate additional
properties and pieces of data, as the model
is to be applied to a variety of tasks. The
Generic Chemical Model in particular
should provide means for storing/retriev-
ing all the information found in common
data file formats, i.e., if a PDB file is to be
downloaded into the system, the system
should be capable at any time to restore all
the information found in the original file.

The Generic Chemical Model was
designed with the well-behaved organic
structures in mind. It uses an abstract rep-
resentation of a list of vertices to hold

information on atoms and groups of at-
oms. A list of bonds is used to link the
atoms (groups of atoms).

Special consideration was. given to
implementing multiple ways of associat-
ing elements of the structure into logical
groups and dealing with those groups.
'Chains', 'atoms within an individual res-
idue', 'secondary structure assignments'
are just some of the examples of possible
default groupings.

Properties can be associated with indi-
vidual bonds or with vertices, groups of
bonds, or with the structure as a whole. In
addition to the default list of available
groupings, the developer can program his
own groupings specific to his particular
needs, which will operate alongside the
default ones.

For example, the code below shows
one of theways of selecting specific groups
inside the structure - highlight all nitrogen
and sulfur atoms inside the structure:

The division between abstract and cus-
tom methods causes enough confusion, so
some more explanations are needed. All
the properties could be roughly divided
into two classes.

All the properties support generic data
manipulation interfaces, which allow code
to get/modify/remove any particular piece
of data in abstract way, non dependent on
particular contents. Likewise all the lists
of properties are not fixed, but dynamical-
ly defined, which allows new properties
for each object inside the data model to be
defined in run time and still be subjected to
the much the same manipulation as the
default properties.

But some properties have a set of cus-
tom methods for special manipulations in
addition to the abstract ones. Such meth-
ods are usually created for common prop-
erties - which are likely to be present in
many objects and often referred to. For
example, it could be the 3D coordinates of



INTERNET - WHERE IS CHEMISTRY GOING? 672
CHIMIA 52 (I998) Nc. 11 (November)

vertexes. The developer can still use the
generic abstract methods for handling
them, but they are also provided with a set
of custom methods/interfaces for more
efficient and rapid manipulations.

For example, since 'simple charge' is
considered to be a common feature, it is
provided for both in a generic implemen-
tation (being treated as one of the default
named properties)
v.ge Proper ty ("charge") ;

and in specific implementations
v.getCharge();

The basic data model is being continu-
ously enhanced and improved, and these
improvements aremodular andglobal (Fig.
4). If you write a new filter for a Chem-
Symphony project (e.g., to cope with a
legacy data source), this resource will al-
ways be available to you.
a) What the molecule looks like
b) Molecular graph
c) Internal representation by lists of ver-

tices and bonds
Below is an example of source code

using the representation above to make
something useful:

As I have already mentioned the Chem-
Symphony data model was designed and
implemented with 'well-behaved' organ-
icmolecules in mind. The built-in flexibil-
ity allowed us to adapt it to the variety of
completely different tasks (many of which
could not even be considered at the time of
the initial design), such asdatabase search-
es, chemical reactions, quantum chemis-
try calculations and others. It nevertheless
has its inherent limitations when we leave
the scope of single molecules (limitations
which are also present in most of the
widely used formats for describing mole-
cules).

The ChemSymphony data model is not
very effective in operating on inter-related
ensembles of molecules with complicated
dependencies. It also cannot be applied
effectively to crystallographic structures
and data sets. As of now, we have limited
support for advanced chirality manipula-
tions, although this support is easy to im-
plement within the existing data model. It
now seems to us that the most efficient
way of generalising the ChemSymphony
data model so as to cope with these com-
plications, complexities which are funda-
mental and inherent in real chemistry, will

lead us to address some of the issues
pertinent to handling data in other scientif-
ic domains.

The ChemSymphony data model was
designed for chemistry, but it could be
adapted for certain other fields (in the
early days ofChernSymphony ,some com-
puter scientists experimented with using
the schema to represent hypertext net-
works on the WWW). We think that it
should be possible to generalise the data
model to cope with other information do-
mains [2].

Received: October 13, 1998

[1] ChemSymphony's WWWsitehasfulldocu-
mentation and a number of examples (http://
www.chemsymphony.coml).

[2] Early thoughts on an extension to the data
model were presented to the Objects in the
Bioinformatics conference in August, 1998
(http://www.ebi.ac. uk/oib98/ Abstracts/
loeffler.html).

II create generic datamodel - initially empty
GenericChemModel rnd = new GenericChemModel();

II create new vertex
D3Vertex vI = new D3Vertex("C", 2.765, 8.4, 0.0);

Iladd this vertex to datamodel
rnd.addVert (vI);

II set one of he default properties
vI.setProperty("charge" , "-1");
II since this property is default - it has generic
implementation as well, i. e.
II v1.setCharge(-I); is also correct, albeit the first one
is more general
II now some user property
v1.setProperty("rny atom index", "1");
Ilcreate second vertex
D3Vertex v2 ; new D3Vertex('C", 1.0, 9.0, 0.0);
II add this vertex to the datarnodel
rnd.addVert (v2);

II create new bond connecting the two vertexes created
above
D3Bond bond = rnd.connect(v1, v2);
II or bond; rnd.findBond(vl, v2);
II or bond = v1.getBond(v2);
II all of those use different points of reference, but
result in the same behaviour


