specific receptor expressed at high density on human cells but absent on producer cells, thus increasing biosafety.

In chronic phase CML, Ph-stem cells can be mobilized efficiently into the peripheral blood by intensive chemotherapy. In most CML patients, Ph cells have a CD34+/HLA-DR- phenotype which can be depleted from the harvest by extended long-term marrow culture. In a phase-I/II trial of haematopoietic stem cell autotransplantation for patients with CML, serum-free ex vivo gene marking has been performed after in vivo and in vitro purging of Ph+ cells. Retroviral gene transfer was performed in committed and primitive progenitor cells (long-term culture-initiating cells, LTC-IC) for 7 days in suspension culture with serum-free vector-containing media supplemented by stem-cell factor (SCF), interleukin-3 (IL-3) and flt-3 ligand. Gene-transfer efficiency was determined as the percentage of G418-resistant colonies relative to the total LTC-IC or CFU-C-derived colonies.

After 7 days of transduction culture, the overall number of LTC-IC derived colonies in CD34+ and CD34+/HLA-Drlo cells increased on average 3.9 ± 2.3 and 2.7 ± 2.4-fold, respectively. The transduction efficiency was 49 ± 1.3% and 57 ± 8.4% for CFU-C and LTC-IC, respectively, generated from CD34+ peripheral blood progenitor cells. The marker gene is present in the peripheral blood for 200 days. Preliminary analysis suggests that up to 10% of those cells from the ex vivo culture that contribute to long-term haematopoiesis contain the transgene. A new method of viral integration-site analysis demonstrates oligoclonal haematopoiesis with different clones of the marked population detectable at varying time points.

While extended static culture (>7 days) leads to telomere shortening and decreased telomerase activity, shorter culture periods maintain telomere length and increase telomerase activity. Telomere loss after 12 days ex vivo expansion culture is not significantly greater than following standard-dose chemotherapy. Human peripheral blood-derived haematopoietic stem cells (HPSC) retain all biological in vitro and in vivo properties for long-term haematopoietic reconstitution.

In conclusion, retroviral gene transfer into primitive haematopoietic progenitor cells can be achieved using long-term ex vivo transduction in serum-free culture conditions supplemented by flt-3 ligand and SCF, with or without IL-3, IL-6 or thrombopoietin. Preliminary data indicate that efficient gene transfer into repopulating haematopoietic stem cells is possible.

The first clinical gene therapy protocol began in 1990 for the correction of adenosine-deaminase (ADA) deficiency. Since then, retroviral, adenoviral, lentiviral, adeno-associated and non-viral gene delivery techniques have been explored for treatment of inborn diseases. An explosive second phase began when the technology was exported to treatment of cancer and AIDS.

In the context of T-cell-depleted allogeneic bone-marrow transplantation (allo-BMT), delayed donor-lymphocytes infusion plays a central therapeutic role in both graft-versus-leukemia and immune reconstitution. However, the use of donor lymphocytes is limited by the risk of severe graft-versus-host disease (GvHD) which is a frequent and life threatening complication of BMT. Patients who relapsed or developed an Epstein-Barr-virus-induced lymphoma after BMT were treated with donor lymphocytes transduced with the thymidine kinase suicide gene of the Herpes Simplex virus (HSV-tk). HSV-tk expression confers to donor lymphocytes a selective in vivo sensitivity to the drug ganciclovir allowing a specific treatment of GvHD, thus avoiding immunosuppressive therapies.

The SFCMM-3 vector that encodes the gene for HSV-tk was generated under the control of a viral LTR promoter as well as the gene for a truncated and, therefore, non-functional version of the low-affinity receptor for nerve-growth factor (LNGFR). This LNGFR gene served as a marker for successful transduction and was under the control of the SV40 promoter. The transduced cells survived for over 12 months, in high proportions (up to 13.4% of circulating peripheral blood lymphocytes (PBL)) resulting in antitumor activity in over 50% of patients. Complete remission could be achieved in patients affected by EBV-lymphoma, chronic myelomonocytic leukemia, acute myeloid leukemia, non-Hodgkin lymphoma, and multiple myeloma.

Among three patients who developed a GvHD after donor lymphocytes infusion, two patients showed complete remission after treatment with ganciclovir, whereas one patient with chronic GvHD showed partial remission. Circulating PBLs obtained from the patient before and after ganciclovir treatment showed no difference in ganciclovir sensitivity in vitro and high expression levels of the cell-surface marker LNGFR, suggesting that ganciclovir resistance of chronic GvHD is mainly related to the cell-cycle dependent activity of the HSV-tk/ganciclovir system.

Three patients treated with donor T-cells, which were genetically engineered to express HSV-tk, developed a specific immune response against the tk protein, which resulted in immediate elimination of the infused genetically engineered cells. This phenomenon was observed in patients who received the first infusion of genetically modified donor cells late after BMT, documenting the role of the recipient immune constitution. To circumvent the intrinsic limitations of the HSV-tk based strategy, such as immunogenicity, partial ganciclovir resistance and cell-cycle dependence, modified vectors for the new and promising suicide gene-strategy will be developed.

Gene Transfer for Immune Therapy of Cancer

Claudio Bordignon, Director Gene Therapy and Cell Transplantation Program, Fondazione Centro S. Raffaele Del Monte Tabor, Milano, Italy