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Order and Phase Separation in Alloys

Gernot Kostorz* and Bernd Schonfeld

Abstract: In an initially homogeneous alloy quenched from high temperature, local ordering and/or phase
separation may occur on the way towards thermodynamic equilibrium at a lower temperature. Some of the
related diffuse scattering effects, including those around the primary beam (small-angle scattering), are
presented, and some recent results of X-ray and neutron scattering studies of short-range order and
decomposition in some alloys are discussed.
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Fig. 1.Scattering (schematic) from a binary alloy crystal (with some short-range order). The Bragg
positions of a perfect pure crystal of the solvent species are indicated by the thin vertical lines.

1. Introduction

Ever since X-ray diffraction in crystals
was demonstrated [1], standard crystallo-
graphic methods have been developed
and used to obtain average structural in-
formation (i.e. on the position of atoms
within the unit cell) on many crystalline
materials on the basis of Bragg's law, i.e.
from measurements of Bragg peaks of
powder or single-crystalline samples.
Neutron diffraction is a little more recent
[2]. While X-rays are scattered by the
electrons in the sample and are thus 'ele-
ment-specific', neutrons are scattered by
nuclei (and also, through the interaction
with their magnetic moment, by local
variations of the magnetic induction) and
are 'nucleus-specific'. It has also been
known for a long time that any random
arrangement of two or more scattering
species on an average lattice will intro-
duce some diffuse scattering intensity be-
tween the Bragg peaks - so-called (mono-
tonic) Laue scattering. (In practice,
thermal diffuse scattering may be more
prominent in the case of X-rays. For neu-
trons, nuclear spins and mixtures of iso-
topes with different scattering powers
lead to 'incoherent scattering' as an addi-
tional background.) Any deviation from
randomness in the occupation of lattice
sites and attendant changes in interatomic
distances' will modulate the diffuse scat-
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tering accordingly, and it is this (coherent
elastic) diffuse scattering that is most im-
portant for materials science, since the
microstructural features that are at the or-
igin of such scattering must be known in
order to understand many macroscopic
properties and property changes.

According to the Fourier theorem, lo-
cal inhomogeneities of very small (atom-
ic scale) extent in real space will cause
coherent scattering essentially every-
where in reciprocal space, while larger
inhomogeneities will lead to larger scat-
tering contributions close to the transmit-
ted beam and near Bragg peaks. Sche-
matically, the difference of coherent scat-
tering of a real alloy crystal and of an
ideal, chemically pure crystal is illustrated
in Fig. 1.Diffuse X-ray scattering is more
commonly used than neutron scattering
and is presently receiving increased at-
tention owing to the availability of pow-
erful and highly resolving instruments at

a•......•-

synchrotron radiation sources, but there
are some limitations owing to back-
ground contributions from Compton
scattering, thermal diffuse scattering,
and, near an absorption edge, resonant
Raman scattering. Truly elastic diffuse
scattering may be measured conveniently
with thermal or cold neutrons, as inelastic
scattering may be eliminated (except
very close to Bragg peaks) by energy
analysis of the scattered neutrons. As for
both types of radiation, the scattering by
inhomogeneities is usually weak, the kin-
ematic scattering theory is applicable.

The diffuse scattering around the pri-
mary beam is called small-angle scatter-
ing (SAS). It may be measured in trans-
mission or - surface sensitive - in graz-
ing incidence near the critical angle for
total reflection. In the standard transmis-
sion experiments, neutrons are advanta-
geous because absorption is low for most
materials.

[Q]
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2. Short-range Order in
Substitutional Solid Solutions

(also called 'structure factor') which
must be appropriately averaged over the
whole system.

For a perfect monatomic crystal, F(Q)
is given by the phase-weighted sum over
all individual scattering objects (atoms or
nuclei) in the beam, i.e.

the atoms; the static and thermal Debye-
Waller factors cause only a weak Q de-
pendence remaining for the case of neu-
tron scattering). Measurements of diffuse
elastic scattering will thus, if they show
any modulations, reveal short-range or-
der. For example, al < 0 means prefer-
enceof AB nearest-neighbour pairs [see
Eqn. (7)], and SSROis enhanced between
Bragg peaks. In the opposite case, al > 0,
there are more BB pairs than expected
from a random distribution (clustering),
and an enhancement of diffuse scattering
is found near Bragg peaks. In practice,
not only several higher-order SRO pa-
rameters must be taken into account, but
also the additional modulations of diffuse
scattering due to atomic displacements
[un'# 0 in Eqn. (3)]. A careful separation
of these two diffuse scattering contribu-
tions is therefore necessary. This separa-
tion is only feasible with the required pre-
cision if single crystals are studied. For-
tunately, the two contributions show a
different symmetry in reciprocal space.
An expansion of the exponential in Egn. (3)
yields different levels of approximation
for the displacement scattering, and first-
and second-order approximations work
quite well as long as the displacements
are not too large. Several methods (see
[12]) have been developed for this sepa-
ration.

Reliable SRO parameters obtained
from diffuse scattering may subsequently
be used to model the short-range ordered
state of a crystal on a computer [13]. As
an example, Fig. 2 shows the short-range
order scattering intensity from a Ag-13.4
at. % Al single crystal. The sample was
aged at 673 K for 184 h and subsequently
quenched into iced water. The aging tem-

7)

(5)Ic(Qf! = (1-c)a(Q)

pDD -c c- pAn
0. =_11 __ = n
n )-c C

where

with c = atomic fraction of B atoms,
while

As the translational symmetry is now
broken, Eqn. (1) with F(Q) according to
Eqn. (3) yields a finite scattering intensi-
ty also between Bragg peaks, which is
called diffuse scattering.

Deviations from random site occu-
pancy are generally called short-range or-
der (SRO). The simplest case is a binary
alloy A-B without any displacements [i.e.
all Un = 0 in Eqn. (3)]. For Q '# QB the
structure function may then be written as

where R'n is a distance vector from the
site labelled n to an (arbitrary) reference
site within the crystal, and the Warren-
Cowley short-range order parameters
[11] are defined using the conditional
probabilities pj of finding an atom of
type j E { A,B} at site n if an atom of type
i E {A,B} is at the origin;

Irrespective of the state of order, ao
must always be equal to one. If A and B
atoms are randomly distributed, all other
an will be zero, and Eqn. (4) yields the
simple monotonic Laue scattering (it de-
creases monotonically for X-rays mainly
because of the form-factor variation of

( J)

(2)

(Q) = IF(Q 12

'(Q) = b xp(-i ·Rn)
II

The theory of scattering by real crys-
tals has been treated extensively by
Krivoglaz [3], for SAS of X-rays mostly
by Guinier and Fournet [4][5] and Porod
[6]. These basic treatments may be easily
adapted to non-polarized neutrons [7][8].
For magnetic diffuse scattering, see
[9][10]. A more detailed comparison of
X-rays and neutrons for metallurgical
studies may be found in [8], and in the
following only some basic features will
be summarized. Subsequently, a few re-
cent examples of the authors' current re-
search activities will be given,

The coherent elastic scattering inten-
sity of any system is proportional to the
square of the scattering amplitude F(Q)
where Q = k-ko is the scattering vector
and ko, k are the wave vectors of incident
and scattered waves. For elastic scatter-
ing, Q = IQI = 41tsin8/A where 8 is half the
scattering angle and A is the wavelength
of the radiation used. Thus, the properties
of any scattering ensemble are contained
in the structure function

Fig. 2. Short-range order diffuse scattering [lines of equal intensity in 0.1 Laue units; 1 Laue unit
= c(1-cMWJ for (a) a (001) and (b) a (110) plane of Ag-13.4 at.% AI. The as-separated data
(Georgopoulos-Cohen method) are compared with the pattern recalculated from 27 short-range
order parameters obtained by a least-squares fitting of the separated a(Q).
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where b is the coherent scattering length
(including the form factor and the ther-
mal Debye-Waller factor) and the Rn are
the position vectors in the ideal lattice.
With Eqn. (2) in (1), one obtains only
Bragg scattering, i.e. nonvanishing inten-
sities occur only for special values of Q
that correspond to reciprocal lattice vec-
tors QB' In an alloy (for simplicity, we
discuss only substitutional alloys, i.e.
only the sites of the average base lattice,
but no interstitial sites, may be occupied
by the atoms of the components), b will
also depend on the site n, and each atom
may also be moved by a local displace-
ment un from the average lattice position
Rn> i.e. the scattering amplitude of the
ensemble becomes
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Fig. 3. One of the (111) planes of (a)a modelled short-range-ordered alloy crystal and (b) a crystal
with a random arrangement of Ag (open circles) and AI (filled circles). Atoms belonging to the C9
Clapp configuration are shown by enlarged symbols [14].

perature was chosen in the a phase close
to the a-Il two-phase region to set up a
high degree of short-range order. The dif-
fuse X-ray scattering measurement was
performed at room temperature using
Mo Ka radiation, and scattering intensi-
ties were registered at about 11000 posi-
tions under monitor control [14]. To ob-
tain the elastic scattering cross sections
from the experimental counts, the scatter-

one around 112 112 112, one of the special
positions of a f.c.c. crystal, and a local
one at 2kF positions. The latter type aris-
es because of the particularly flat pieces
of the Fermi surface along <110> that are
spanned by the scattering vector 2kF. The
modulation of SRO scattering is weak
with respect to the monotonic Laue scat-
tering (l Laue unit).

Short-range order in real space was
visualized on model crystals of 32x32x32
f.c.c. unit cells. To determine the subtle
differences, statistically uncorrelated ar-
rangements of alloys with the same
composition were also simulated. The
modelled crystals were analysed with re-
spect to the 144 distinguishable atomic
configurations of the first coordination
shell (Clapp configurations [15]). The C9
configuration is found most enhanced in
the short-range ordered state in compari-
son with a random alloy (Fig. 3). This
figure also demonstrates that the Clapp
configuration C9 (for its nomenclature,
see Fig. 4) is uniformly spread in the
model alloy, with no indication of any
larger ordered cluster. In addition, the
Clapp configurations C4 and C5 are also
largely enhanced. These three structural
elements are all present in AgsAI with
AsB structure [16]. Ab-initio electronic
structure calculations also give the AsB
structure as a possible ground-state struc-
ture [17]. Experimentally, no long-range
ordered structure is known for the Ag-Al
system.

The simulated crystals of the short-
range ordered state may be used to cal-
culate effective pair interactions
y =.l..tyAA + yBB)_yAB if a state ofn 2\ n n n'
thermodynamic equilibrium is modelled,
In the Inverse Monte Carlo method pro-
posed by Gerold and Kern [18], many
virtual exchanges of nearest neighbours
are introduced to 'test' the equilibrium
state, and a large set of corresponding
nonlinear equations serves to extract the
effective pair interactions for a given
number of neighbourhood shells. In this
particular case, a set of 14 effective pair
interactions is at least required to repro-
duce short-range order scattering with
diffuse maxima at 2kF and '12 '12 112 posi-
tions in a subsequent Monte Carlo simu-
lation. For a good reproduction of the
short-range order parameters, a set of 18
yn was finally taken. If one assumes that
the Yn do not depend on temperature, the
order-disorder transition temperature of
AgsAI can be estimated by Monte Carlo
simulations. With -135 K this tempera-
ture is expectedly low, and is similar to
the theoretical1y derived ordering tem-
perature of -220 K [17].

ing was calibrated by comparison with
the scattering from polystyrene. Comp-
ton scattering and thermal diffuse scatter-
ing were calculated and subtracted. Fi-
nally, the Georgopoulos-Cohen and the
Borie-Sparks methods (see [12]) were
used to separate SRO and displacement
scattering. Both evaluation schemes yield
essentially the same results. Two types of
diffuse maxima are observed; an absolute
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3. Small-angle Scattering

In a limited range of scattering vec-
tors smaller than about 1t/d where d is the
interatomic distance (typically 0.3 nm in
condensed matter), the discrete positions
of the scattering centres [as in Eqns. (I)
and (2)] are no longer resolved. This al-
lows the scattering length distribution to
be written as a continuous function, the
scattering length density per), which
gives the local average in a volume ele-
ment d3r around the position vector r.
The sum in Eqn. (2) may thus be replaced
by an integral extending over the sample
volume Y,

also be repeated for successive motion of
dislocations on the same slip plane -
changes the configurational energy of the
crystal. In obvious correspondence to
long-range ordered crystals, this energy
may be called diffuse antiphase boundary
energy, Yd [19][20]. It seems to be an im-
portant parameter (see [21-23]) in the
distinction of 'wavy', distributed glide
typically found in pure metals and dilute
alloys, and planar glide, i.e. a concentra-
tion of slip into larger slip steps on fewer
planes, characteristic for more concen-
trated alloys. Fig. 5 shows Yd (for a large
number of slip steps) for three Cu alloys,
calculated from the effective pair interac-
tions obtained from diffuse scattering ex-
periments (X-rays for Cu-AI [25], neu-
trons for Cu-Mn [22] and Cu-Zn [26]).
The occurrence of planar slip may be re-
lated to an increasing number of disloca-
tions emitted from the same source when
Yd for the first dislocation becomes larger
(see [23]).

So far, alloys with a tendency toward
local ordering have been presented. A re-
cent review [27] gives a more detailed
assessment of the field. For clustering
systems, diffuse scattering measurements
are usually more difficult as the relevant
scattering occurs close to the Bragg
peaks. This requires single crystals of
very high perfection and good instrumen-
tal resolution. As displacements are sys-
tematically larger in decomposing alloys,
the separation of SRO and displacement
scattering is also more complicated. For
the initial stages of decomposition, dif-
fuse scattering measurements have nev-
ertheless contributed considerably to the
understanding of alloy behaviour, espe-
cially in combination with SAS .

15

moves across a \111) plane, it shifts one
half-crystal by ""2<110> with respect to
the other. This changes the number of
AA, AB, BB pairs (not only nearest
neighbours) across the slip plane, proper-
ly weighted by the short-range order pa-
rameters. This (static) shift - which can
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Fig. 4. Nomenclature of nearest-neighbour configurations as introduced by Clapp for the f.c.c.
lattice. The configurations found largely enhanced in short-range ordered Ag-rich Ag-AI with
respect to a random alloy are C4 (5,7), C5 (6, 12)and C9 (1,7,9). The numbers in brackets denote
the sites that are occupied by AI atoms. The other sites in the nearest-neighbour shell as well as
the central atom are taken by Ag atoms.

Apart from the possibility of compar-
ing the ground-state energies and stabili-
ty of different long-range ordered struc-
tures, the effective pair interactions are
also quite relevant for the deformation
behaviour of short-range ordered alloys.
When a dislocation in a f.c.c. crystal

Fig. 5. Diffuse antiphase boundary energy I'd as a function of solute concentration; continuous
lines. Open circles indicate observations of wavy slip, full circles planar glide, and the triangle
mixed behaviour. The arrows indicate the wavy ~ planar transition suggested by Hong and Laird
[24] based on a model requiring atomic mobility [22].

F(Q) = f p(r)e p(-iQ· r)d'r ( )
v
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If per) is constant everywhere in the
sample, the scattering intensity will be
zero for any accessible Q ::j:. 0 (for suffi-
ciently large samples), i.e. only local de-
viations of per) from the macroscopic av-
erage p contribute to the SAS signal.
Apart from defects and fluctuations,
compositional variations as they occur in
decomposing alloys are an important
cause for such local variations of scatter-
ing length.

3.1. The Two-phase Model
The structure function for SAS can be

expressed relatively simply, if small par-
ticles of a second phase, with a homoge-
neous scattering-length density Pp' are
assumed to be embedded in a homogene-
ous matrix (this could also be a liquid or
vacuum) of scattering length density Pm'
The scattering amplitude, Eqn. (8), then
becomes

The scattering of each individual par-
ticle in the ensemble contained in the
sample volume V is controlled by the sin-
gle-particle scattering amplitude

. Fp(Q) = V;I J exp(-iQ· r)d3r (La)
Vp

where the integration now extends over
the particle volume VP' The amplitude
Fp(Q) and the corresponding single-parti-

cle scattering function IFp(Q)12 can be
calculated for many particle shapes (see
e.g. [4][28]). If there are N particles, all
equal and uncorrelated, as in a dilute two-
phase system, the scattering function of a
sample is

All the Q dependence of SeQ) stems
from the single-particle scattering func-
tion, and the simplest approach in the
evaluation of seQ) is to use Eqn.(1l) and
knowledge about IFp(Q)12 (see e.g.
[4][6], where a more complete theoretical
description of SAS can be found.) In real-
ity, however, there are interparticle inter-
ferences in more densely packed particle
arrangements, and there are, even if the
particles remain self-similar, size distri-
butions that modify the scattering func-
tion. For example, a polydisperse uncor-
related ensemble of spheres of radius R
with a size distribution nCR) [n(R)dR is
the density of particles in the size class
(R,R+dR)] leads to

(Q)-p,-p ••rvJ ,(R)F,(Q,R>!'n(R)dR (12)

The size distribution nCR) can be
found from SAS measurements using in-
direct methods (see e.g. [29]). More elab-
orate, appropriate methods are still being
developed for nonspherical particles and
systems with interparticle interference
(see [30]).

3.2. Some Results for Ni Alloys
Ni-based alloys are widely used in

structural applications owing to their
good mechanical properties and their re-
sistance to corrosion. Ni superalloys in
particular exhibit high mechanical
strength at elevated temperatures owing
to the presence of an ordered phase of
hard, coherent precipitates (Ll2 struc-
ture) embedded in the disordered Ni-rich
matrix. Although the technological de-
velopment of superalloys is quite ad-
vanced, there is still a general need to bet-
ter understand the basic physical process-
es controlling microstructural changes
and the (meta- )stability of decomposed
states. In a recent study, small-angle neu-
tron scattering (SANS) has been em-
ployed to investigate decomposition in
Ni-Ti. The scattering contrast is particu-
larly favourable in this system, as the
scattering length of Ti is negative for
neutrons.

The complex decomposition se-
quence in Ni-rich Ni- Ti is of special in-
terest, as metastable states appear during
phase separation, whereas the stable or-
dered ll-phase (Ni}Ti, hexagonal) is ob-
served only after extended aging above
about 1200 K. Earlier SANS studies indi-
cated that the metastable states may in-
volve two successive regimes with Ti
concentrations of about 18 and 22 at. %
(y" and y ') [31][32]. These conclusions
were drawn from integrated SANS inten-
sities obtained from several samples aged
at 850 K for various times and quenched
to room temperature. The integrated in-
tensity Iis given by

Fig. 6. Integrated SANS intensity as a function of aging time for Ni-11.3 at. % Ti aged at 870 K (filled
squares), 900 K (filled circles) and 950 K (fUll triangles), for Ni-11.1 at. % Ti at 950 K (open triangles)
and for Ni-10.1 at.% Ti at 900 K (open circles).

where Cp is the volume fraction of the
particles.

Although two regimes can also be dis-
tinguished from a scaling analysis of the
scattering curves [32], in situ studies
monitoring the evolution of all stages in
the same sample are much more conclu-
sive and have been performed recently.
Polycrystals were investigated at SINQ/
PSI (Villigen, Switzerland), while single
crystals were measured at Dll/lLL (Gre-
noble, France). Special furnaces for
SANS were constructed and installed.
Thus, quick temperature changes and in

where the integration includes all Q val-
ues. This requires good quality measure-
ments especially at larger Q, as SeQ) has
to be extrapolated for Q ~ 00. In the two-
phase model,

10010
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Fig. 7. SANS patterns of Ni-rich Ni-Ti single crystals solution treated at 1440 K and annealed in
situ for (a) 46 min at 1240 K, (b) 10 min at 1220 K, (c) 43 min at 1200 K. The patterns were
symmetrized to highlight the dominating features. The incident beam was parallel to the (110)
surface normal of the sample, the horizontal axis is along (100).
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miscibility gap, Fig. 7 shows that the
metastable states still prevail, as indicat-
ed by the strong SANS intensity along
(100), and are still present after 1h. After
some time a new feature progressively
dominates the scattering pattern. Sharp
intensity streaks start growing along the
(111) directions. They are due to the for-
mation of platelets of the hexagonal
ll-phase. The direct formation of the
ll-phase without a preceding appearance
of metastable states was only observed
just below the incoherent (stable) solvus
line. Transmission electron microscopi-
cal investigations are under way to clarify
the spatial evolution of the different states.
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b) i- 11.7 at% Tia) i- 12.0 at % Ti

situ solid solution treatments at high tem-
peratures became feasible. The homoge-
neity of any sample can now be directly
controlled via the SANS intensity by means
of the 'flatness' ofthe scattering patterns.

Polycrystals of Ni-lO.l, 11.1 and 11.3
at.% Ti were solution-treated at 1440 K,
quenched in water and aged between 870
and 950 K for up to 90 h. The scattering
intensity increases with time and shows
an interference peak that reflects the
alignment of the coherent metastable pre-
cipitates along (100). With increasing ag-
ing time, the peak position continuously
shifts to smaller values of the modulus of
the scattering vector. The integrated
SANS intensities vs. aging time are
shown for all polycrystalline samples in
Fig. 6. The error is estimated considering
the statistical uncertainties of the meas-
ured data. An intermediate plateau is
clearly visible for Ni-11.3 at.% Ti aged at
870 K after about 2 h, and at 900 K after
about 1 h. For Ni-lO.l at.% Ti aged at
900 K for 52 h, no plateau was reached.
For the two crystals aged at 950 K a pla-
teau is resolved after about 3 h, but no in-
crease is recorded during the experiment.

The values of Ti content in the precip-
itates are calculated from the integrated
intensity using the Ti content of the ma-
trix from the coherent solvus given by
Rastogi and Ardell [33]. The data are in
good agreement with the metastable mis-
cibility gap suggested by Hashimoto and
Tsujimoto [34]. It seems that the fIrst pla-
teau ('Y' state) is only well resolved if the
initial state of the alloy within the misci-
bility gap is located below the ordering
temperature [35]. This temperature was
calculated within a Bragg- Williams mod-
el using effective pair interaction param-
eters recently determined from diffuse
neutron scattering [36].

For single crystals at temperatures
near and slightly above the suggested


