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Crystallography of Modulated Structures
in Superspace

Gervais Chapuis* and Andreas Schonleber

Abstract: Since the discovery of X-ray diffraction, it was believed that the discrete distribution of diffracted
intensities was a direct consequence of the periodic arrangement of atoms in the three dimensions of space,
However, in the last thirty years many examples of new types of crystals have been found which do not fulfil
this criterion but nevertheless give perfectly discrete diffraction patterns, The new category of crystals which
exhibits this property is called aperiodic, It includes incommensurate crystals, quasicrystals and composite
crystals. These structures are best described in superspace, an extension of the three-dimensional space up
to six dimensions. Aperiodic structures can be interpreted as three-dimensional cuts of higher dimensional
periodic objects. The description of an incommensurate structure in 3+1 dimensions along with the concept
of symmetry in superspace is presented as an example.
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Introduction

The three-dimensional periodic arrange-
ment of the atomic constituents (atoms,
molecules, ions, ... ) of crystalline phases
was believed to be one of the most funda-
mental principle underlying the architec-
ture of condensed matter. As a conse-
quence of this characteristic periodicity,
only a finite number of possible symmet-
ric arrangements of the atomic building
blocs are possible in three-dimensional
space. The periodicity (translational
symmetry) imposes, for example, limita-
tions on the rotational symmetries: pen-
tagonal and higher than hexagonal sym-
metries can never occur. The possible
230 types of arrangements are each char-
acterised by their three-dimensional
space group.

By means of X-ray, neutron or elec-
tron diffraction, the atomic structure, i.e.
the spatial arrangement of the atoms, can

'Correspondence: Prof. G. Chapuis
Institute of Crystallography
University of Lausanne
SSP Dorigny
CH-1 015 Lausanne
Tel.: +41 21 6923771
Fax: +41 21 6923775
E-Mail: gervais.chapuis@ic.unil.ch
http://www-sphys.unil.ch/ic/

be elucidated by eXploiting the diffracted
intensities. In this process, one takes ad-
vantage of the particular conditions im-
posed on the diffraction pattern by the
space group symmetry. For example the
rotational symmetries can be observed in
the diffraction patterns.

Another consequence of the three-
dimensional periodicity is that the dif-
fracted intensities, i.e. the Bragg peaks,
can be expressed in terms of a linear com-
bination of integer multiples of three in-
dependent vectors, the reciprocal basis
vectors. On a macroscopic level, each face
of a crystal can be uniquely characterized
by three integers, the Miller indices.
There exists an intricate relation between
the Miller indices and the three integers
associated with the diffracted intensities.

This concept of periodicity and sym-
metry represents a powerful tool for
structural studies and is at the origin
of the very successful investigations of
crystals by optics and diffraction. Never-
theless some indications appeared ques-
tioning this paradigm of three-dimen-
sional periodicity of crystals. One of the
earliest examples was the attempt to as-
sign Miller indices to the faces of the
mineral calaverite AU1_pAgpTez(p < 0.15)
[1]. Following a very careful study of
more than 100 samples, the authors came
to the conclusion that 'das Gesetz del' ra-
tionalen Indizes [ ... ] nicht ein allge-

meines Gesetz ist'. The law of rational
indices expresses the fact that the Miller
indices of each crystalline face are
uniquely characterised by three small in-
tegers. Obviously, this general law was
not applicable to calaverite. Later, the
diffractogram ofy-NazC03 resisted every
attempt to find combinations of three in-
tegers [2] to characterise each reflection.
More recently, the discovery of quasi-
crystals [3] with diffraction patterns ex-
hibiting pentagonal, octagonal, decago-
nal or dodecagonal symmetries (see [4])
also contributed to the serious question-
ing of the three-dimensional periodicity
paradigm.

The few examples mentioned here are
just a small selection among numerous
other cases, which continue to inflate the
list at a rapid pace.

In this article we would like to show
the consequences of the departure from
three-dimensional periodicity on the
structure of condensed matter. In a first
part, we shall present the generalised
concept of periodicity which goes be-
yond three-dimensional space and the
tools which have been developed recent-
ly in order to deal with it. In a second
part, we shall illustrate this new concept
with an example selected from organic
compounds and finally, we shall deal
with the consequences of this new devel-
opment.
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Fig. 1.Extension of a crystal structure in superspace. The atomic modulation function is periodic
with the basis translation vectors aS1and aS4'The one-dimensional cut R indicated by the points
A, Band C represents the real atomic structure. Along this line, the periodicity is lost, the distance
between A and B is different than the distance between Band C.

One of the common features of the
examples described above is that the full
set of reciprocal vectors can be described
by integer multiples of more than three
basis vectors. In mathematical terms,
each reciprocal lattice vector H can be
expressed as

h, := hla; +~ • +~a; + ...+hna:
, I

where n can vary up to six in the case of
icosahedral quasicrystals and up to five
for some incommensurate or other qua-
sicrystal structures. For n > 3, the relation
""'~'1iI'JillI\;1I1'~~<!WI\no.:Jlloal __ ;·,ftil.1f:'CAllliP.\.!.;ii:1th·_""'''';Ii''-t\li.i.oow.:.1!:;'''*i.a¥I'L'01i'; •••_,,,,,.,,;

. a; J == qd1a; qd2a; + q.aa;

must be satisfied with at least one irra-
tional value of % . By generalising the
concept of space dimension, the vectors
H can be interpreted as reciprocal vectors
in n dimensions. At this point, one could
ask whether there exists a periodic struc-
ture in n dimensions (n > 3) which would
transform according to the reciprocal
space expressed by the vector H. The ex-
tension of the space of this type of crystal
structures in higher dimensions, the so-
called superspace, has been extensively
studied during the last three decades [5]
and is currently under further develop-
ment.

We shall illustrate the extension prin-
ciple with the example shown in Fig. 1.
The periodic structure described in high-
er dimensional space, i.e. the superspace
is defined by the two basis vectors 3s 1

and 3S4' In each unit cell, an atom is ex-
pressed as a string, which is periodic
along 3S4' Although this structure is per-
fectly periodic in superspace, this is in
general not the case in the one-dimen-
sional cut (which represents our three-
dimensional space) along the line defined
by R. If this line is a rational cut of the
two-dimensional periodic array, the re-
sulting one-dimensional structure is peri-
odic and is usually called a superstruc-
ture. If on the contrary this line is not a
rational cut (as shown in the Figure) the
resulting structure is non-periodic or ape-
riodic. The aim of this superspace ap-
proach, the extension of the three-dimen-
sional space to (3+d)-dimensional space,
is to study the characteristics of aperiodic
crystal structures derived from the three-
dimensional cut of periodic pattern of up
to six dimensions. One should note that
the shape of the modulation function rep-
resented in Fig. 1 is arbitrary and must be

determined experimentally for each
structural parameter. This function must
however be periodic along 3S4' On the
figure, the variable t is also defined and in
some cases is more convenient to use in-
stead of X4'

At this point one might wonder if the
expression aperiodic crystal is not an oxy-
moron. This would at least be the case in
the classical definition of a crystal. One
of the main discoveries of the recent re-
search of modem crystallography [6] is
that (three-dimensional) periodicity is
not a sine qua non condition for the exist-
ence of crystals. Their long-range order,
which gives rise to the discrete diffrac-
tion pattern, can be realised not only by
periodicity but also by other means of
which the Penrose pattern [7] is just an
example!

In classical crystallography, the con-
cept of symmetry is so fundamental that
any structure description is associated
with its space group symmetry. The iden-
tification of its space group is a prerequi-
site for the solution of a crystal structure.

R

Fortunately, for aperiodic crystals also,
the superspace formalism can take ad-
vantage of symmetry considerations. For
the particular case of one- and two-di-
mensionally modulated structures, i.e.
structures for which all the reciprocal
space vectors can be described by four,
respectively five integers, the full set of
superspace groups has been tabulated (8).
Here also, the specific superspace group
can be selected on the basis of selection
rules characterized by systematic absences
of the diffracted intensities. The resolu-
tion of the structure occurs in superspace.
The main difficulties reside in the charac-
terisation of the modulation curves as
represented in Fig. 1 or more generally
the atomic surfaces for each atom in the
unit cell.

In order to illustrate some of the con-
cepts presented above, we shall discuss
one example of an organic compound,
which exhibits the characteristics of a
non-periodic crystal structure and identi-
fy the structural features which are at its
origin.



CRYSTALLOGRAPHY IN SWITZERLAND 525
CHIMIA2001. 55. NO.6

Fig. 2. The molecules of quinine, C2oH24N202,(a)and mandelic acid, CaHa03' (b). Carbon atoms
are indicated by shaded spheres, oxygen atoms by lines inside a circle and nitrogen atoms by
dotted circles, the hydrogen atoms by small open circles.

Fig. 3. Schematic view ofthe (a', CO) reciprocal layer with main reflections (black dots) and satellite
reflections up to 4th order (grey dots). The diagonal lines indicate the assignment of the satellite
reflections to the corresponding main reflection. Also shown in this figure are the basic cell
(defined by main reflections only) and a supercell approximation (defined by main and satellite
reflections).

The Modulated Structure of
Quininium (R)-Mandelate

In addition to the main reflections, the
diffraction pattern of quininium (R)-man-
delate, C2oH2SN202+ . C8H703-, exhibits
a series of satellites of which many orders
can be observed [9][10]. The molecules
of quinine and mandelic acid are shown
in Fig. 2, a schematic view of the diffrac-
tion pattern in Fig. 3. The main reflec-
tions can be indexed in a monoclinic cell
with one formula unit per asymmetric
unit: a = 6.57 A, b = 18.46 A, c = 10.26 A
and ~ = 107.23°. Setting the modulation
vector q = 0.33·a* - 0.27·c*, the com-
plete set of reflections can be uniquely
defined with the four integers hklm.

Without entering into the practical de-
tails of the resolution, the results of the
refinement can be illustrated with two
examples. Fig. 4 indicates the modula-
tions associated with two specific atoms
of the quininium ion, C(3) and C(IS).
The (x2>x4) sections of the electron den-
sity illustrate the variety of the modula-
tion curves which can result from the re-
finement in superspace (for a three di-
mensional periodic structure, this curve
would be just a straight line). The shape
of the modulation indicated in Fig. 4(a) is
close to a step function whereas the mod-
ulation in Fig. 4(b) is very close to a zig-
zag function. The modulation functions
which are periodic along X4 are obtained
by adjusting a number of terms in the
Fourier series. The maximal order of the
terms is limited by the number of obser-
vations which can be measured. As an
example, the variation of the torsion an-
gle defining the position of the vinyl
group is illustrated in Fig. 5. The shape of
the function is very close to a step func-
tion with two positions differing by ap-
proximately 120°. One of the positions is
adopted by 65% of the molecules where-
as the other is adopted by the remaining
35%.

It is straightforward to transform the
structural information from superspace to
real space. From Fig. 1, the position of
each individual atom in a specific cell can
be derived in order to reconstruct the non
periodic structure in three dimensions.
Such an example is presented in Fig. 6
for a specific part of the structure, i.e. the
vinyl group already mentioned in the pre-
vious figure. In this particular case, the
modulation function refined in super-
space translates into the presence of steps
which breaks the three-dimensional peri-
odicity of the structure. In the same struc-
ture, many other types of modulations
can also be found as a result of the indi-
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Fig. 4. Electron density distribution in the (aS2'aS4)plane illustrating the positional modulations
(indicated by the continuous grey line) of the two carbon atoms C(3) (a)and C(15) (b).While the
modulation of C(3) is close to a step function, the modulation of C(15) can be better described
by a zigzag function.

x3=0.156,x1=0.296

We have shown above that incom-
mensurate structures are better described
in superspace. The use of superspace is
not only limited to their descriptions but
can also be applied to the description of
superstructures, i.e. commensurate struc-
tures, which often occur in phase transi-
tion phenomena. In general and for a sin-
gle compound, the full sequence of phas-
es occurring at various temperatures or
pressures can be described with a single
superspace group independently of the
specific values of the modulation vector
being commensurate or incommensurate.

Recently, the use of superspace has
even been extended to the description of
a complete family of compounds exhibit-
ing some compositional changes [11].

New Trends of Research in
Superspace

vidual shapes of the modulation func-
tions refined for each atomic parameter.

At this point one may wonder if the
conventional methods, i.e. solving the
structure in a three-dimensional space
group, could not yield the same results.
For this purpose, a change of the unit cell
is in order so that all peaks can be in-
dexed by three integers. This new cell is
represented by the small cell in Fig. 3.
Setting A* = 0.33·a* - 0.27 ·c* and
B* = b*, we very soon face the difficulty
of selecting C*. Two possible approxi-
mations can be used: C* = l!5·c* or
C* = 1I6·c*. Independently of the
choice, an error in the cell dimensions is
introduced. Another difficulty resides in
some space group symmetry operations
which depend on the parity of the divid-
ing factors 5 or 6 for this particular case.
The use of superspace thus eliminates the
need for this selection. The advantages of
working in superspace are even more no-
torious in the presence of a continuous
change of a modulation vector with e.g.
the temperature.

In many cases, the superspace group
approach is a very sensitive tool to reveal
detailed atomic interactions. The exist-
ence of a structural modulation often re-
sults from competitive forces which can
be much better identified from a precise
knowledge of the structure. In this re-
spect, the refinement in superspace is in a
better position than a commensurate ap-
proximation to deliver the required de-
tailed information.

Do We Need Superspace?
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Fig. 5. The torsion angle of the vinyl group as a
function of 1. One can identify two preferred
orientations, the first with a torsion angle of
about 1300 (65% of the t-space), the latter of
about 100 (35% of the t-space).
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This work shows very elegantly how at
least seven known phases with the gener-
al composition LaTi'_x03 can all be de-
scribed with a single superspace group.
This example is not unique and some
more have been described in the most re-
cent literature.

The trend to generalise the use of the
superspace description is obviously
growing. The potential of this new para-
digm is certainly larger than initially ex-
pected. In the future, we can expect new
and innovative developments in the field
of structural sciences.
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