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Abstract: Electrostriction and elasticity provide highly sensitive probes forthe exploration of structure-property
relationships. With the aid of modern high-resolution capacitive dilatometers reliable linear and quadratic
electrostrictive constants can be determined. The unusual thickness dependence of the converse piezoelectric
effect in a-quartz and the electrostrictive behavior of the alkali halides are presented as examples. The close
correlations between elastic properties and crystal structures are reflected by several heuristic and empirical
rules. Resonant ultrasound spectroscopy (RUS)belongs to the most promising methods for the determination
of elastic constants in the acoustic frequency regime. The potential of RUS for the simultaneous investigation
of elastic and electrostrictive properties including electromechanical coupling effects is discussed.
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1. Introduction

Since the establishment of the first lattice
theoretical models about 100 years ago,
the interpretation of structure-property
relationships ranks among the most im-
portant tasks in solid-state sciences.
Models possessing high predictive power
can help, for instance, to provide struc-
tural and physical data of solids under
extreme conditions which are not acces-
sible by experiment, and to tailor new
materials with special properties. The
different modeling approaches either
make use of transferable force fields de-
termined by certain adjustable parame-
ters or rely on first principles calcula-
tions. While the advantage of empirical
models lies in their high computational
efficiency, the often poor accuracy and
the limited availability of transferable po-
tentials make the use of quantum me-
chanical methods desirable. Although the
basic concepts were developed in the
twenties and thirties of the last century, it
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was the advent of modern computers that
eventually made ab initio calculations
feasible. A detailed overview of compu-
tational methods in crystallography and
mineralogy has been recently given by
Winkler [1].

Besides the fascination for this devel-
opment one should bear in mind that the
interpretation of properties is not exclu-
sively the ability to predict properties
from first principles, but rather to reveal
the relations between chemical composi-
tion, structure and properties of a broad
variety of crystalline materials. In this
context one has to face the following
questions: (i) Is the present amount of
available experimental data sufficient for
the derivation of general relations and
rules? (ii) Which important properties
will not be easily accessible by calcula-
tions in the near future? (iii) Is there a
great difference between a crystal de-
scribed by computer simulation and a
real macroscopic individual? These top-
ics have been controversially discussed
on two workshops [2] organized by the
Laboratory of Crystallography of the
ETH Zurich. In order to illustrate the mo-
tivation for our own research in the field
of crystal physics, I would like to address
these questions brief!y.

To date the complete sets of elastic
constants of about 2000 crystal species
are known. At a first glance this seems to
be a remarkable number. In fact it is less
than 1% of the crystalline materials with

known crystal structure. In the case of
higher order effects the situation is even
more dramatic. Among the different rea-
sons for the large discrepancy between
importance and experimental knowledge
of macroscopic physical properties, the
lack of high quality crystals of sufficient
size is certainly the most important. Ad-
ded hindrances against a broader investi-
gation of crystal properties are the high
technical effort for development and
maintenance of the mostly self-made ex-
perimental set-ups, and the high expendi-
ture of time on preparation and measure-
ment of samples.

As second order derivatives of ther-
modynamical potentials the elastic stiff-
nesses are directly connected with quan-
tities in which the lattice energy per unit
volume is involved. The Christoffel de-
terminants combine the elasticity tensor
with the propagation velocities of sound
waves and related properties such as De-
bye temperature, thermal conductivity,
thermal expansion (Griineisen relation),
melting temperature (Lindemann formu-
la), infrared resonance frequencies and
dielectric behavior. Therefore a general
qualitative interpretation of elastic prop-
erties - in some favorable cases also
nearly quantitative - will open access to
such other properties. With regard to pos-
sible applications, additionally piezo-
electric properties and electromechanical
coupling effects are of considerable inter-
est. Higher order effects provide access
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quadratic electrostriction d'lllI= 5· 10·21m2y-2 E = 106Vm-' .jJ = 0.005 nm

Table 1.Typical values for longitudinal deformations.1l of a sample with thickness J == 1mm caused
by thermal expansion, linear and quadratic electrostriction, respectively.

Quantities with subscripts sand rc are
related to the sample and to the reference
crystal, respectively. The sign of the elec-

the lack of reliable experimental data the
interpretation of quadratic electrostric-
tion has stagnated in the last decades. Just
recently two research groups, one in the
Netherlands [7] and the second in Ger-
many/Switzerland [8], studied the sourc-
es of several disturbing effects and devel-
oped apparative tools which allow for the
successful investigation of quadratic
electrostrictive properties.

2.1. Experimental Approach: High-
resolution Capacitive Dilatometer

Among the different approaches to
the determination of quadratic electro-
strictive constants ([8] and references
therein) the direct strain measurements
employing dilatometers based on the fre-
quency-modulation technique are the
most promising.

The heart of our capacitive dilatome-
ter [8] (Fig. 1) consists of an oscillator
with basic frequency in the range be-
tween 60 and 110 MHz. The two elec-
trodes of the frequency-controlling ca-
pacitor are supported by transducer rods
which are connected with the sample and
with a reference crystal, respectively.
Thus, a periodic longitudinal deforma-
tion of one of the crystals leads to a mod-
ulation of the high-frequency signal of
the oscillator. The modulation is elec-
tronically transformed in a voltage signal
that is finally filtered by means of a
Lockln amplifier. For small deforma-
tions (L11 ~ 10 nm) the linear relationship
L11 = SA between Lockln-amplitude A
and deformation L11 holds in sufficient
approximation. The factor S can be deter-
mined by applying a low voltage ac-sig-
nal, Ure == 10 Y, to the reference crystal
(for example an X-cut a-quartz speci-
men) with the effective converse piezo-
electric effect d!lr The change of length
of the sample is now obtained by

Value Force Induced change in length

a' II == 50 . 10·8K·1 T == 1K ill == 50 nrn

d'lI) == 2 10 12rnV1 E = 106Vm-1 J1 == 2 nm

thermal expansion

Property

linear electrostriction

where the coefficients dijb dijkl etc. de-
note the corresponding first, second and
higher order electrostrictive material
properties.

The components dijb often referred to
as converse piezoelectric constants, form
a polar third-rank tensor. Therefore, line-
ar electro striction can only occur in crys-
tals with a non-centrosymmetric point
symmetry group (PSG), with the excep-
tion of PSG 43. Linear electrostrictive ef-
fects are in the order of 1O-12mY-l(Table 1)
and can be easily measured employing
optical or electromechanical dilatometers
[6]. Due to the important technical appli-
cations of piezoelectric materials (piezo-
electric actuators, sensors, oscillators,
switches, frequency filters etc.) most of
the recent work is devoted to the search
for new non-centrosymmetric crystal
species possessing large polar properties.

In contrast to linear electrostriction,
quadratic effects, represented by a polar
4th rank tensor {dijkl}, exist in all crystals
and even in amorphous materials. How-
ever, in non-ferroelectric compounds
these effects are rather small. Particular-
ly, the mechanical response of a centro-
symmetric crystal on an applied electric
field is often barely above the lower limit
of detectable strains (Table 1). It is there-
fore not surprising that the early experi-
mental results for the quadratic electro-
striction in alkali halides are contradicto-
ry, i.e. the tensor components deviate
significantly in magnitude and in sign.
For example, the literature values of the
component dIll! of sodium chloride vary
between-6.7 and +34·1O-2Im2y-2.Due to

can be neglected in first approximation.
The interest in quadratic electrostriction
is further stimulated by their fundamental
relation to some non-linear optical effects
such as stimulated Brillouin scattering
and quadratic electrooptic effects (Kerr
effect).

The mechanical strains Eij induced by
an electric field E with components Ek
are described phenomenologically by the
Taylor series expansion

The best criterion to test lattice theo-
retical models is proof of their predictive
power. One of the rare examples where a
crystal property was predicted without
previous experimental knowledge is pro-
vided by quadratic electro striction [4].
Such electromechanical effects represent
the second approximation of the mechan-
ical response of matter on an applied
electric field. In 1969 Grindlay and
Wong [5] proposed a model of the 'elas-
tic dielectric' and first calculated the
quadratic electrostriction in some alkali
halides of rocksalt structure type. The
straightforward calculation encouraged
the authors to suggest quadratic electro-
stricti on as a useful probe for the anhar-
monicity of interionic forces. Unlike for
the coefficients of thermal expansion, the
relationship between the higher order
electrostrictive coefficients and the an-
harmonicity of the lattice potential is rel-
atively simple since temperature effects

2. Electrostrictive Effects

to the anharmonicity of lattice potentials.
For small and high symmetry structures
calculations from first principles nowa-
days yield elastic constants which agree
to within a few percent with experimental
data [3], However, these calculations are
still restricted to the athermal limit.
Moreover, the consideration of tempera-
ture effects will remain nearly impossible
in the foreseeable future.

The answer to the third question is
definitely 'Yes'. On the one hand, it is
intrinsically impossible to obtain a real
crystal without defects (the surface is the
worst possible defect). On the other hand,
certain electrical and optical properties
are known to be strongly influenced by
point defects and dislocations. For many
properties no systematic study of their
dependence on different types of defects
has been performed at all. Deviations
from the periodic structure are currently
not tractable by computational methods.
Even with a supreme effort only a negli-
gible, probably non-representative part
of a real macroscopic crystal, which con-
sists of about 1023atoms, can be mod-
eled.

Therefore, our work focuses on the
improvement and development of dy-
namic methods for the experimental in-
vestigation of electromechanical proper-
ties of small samples. Employing these
techniques we study the elastic and elec-
trostrictive properties of crystals as a
function of external forces and of their
real structure.
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II FM oscillator

halides, the longitudinal component dIll I
varies between 2·IO-2]m2y-2 and 6.10-21
m2y-2, whereas the transversal compo-
nent dl ]22always exhibits a negative sign
and dl212 is one order of magnitude
smaller than dill]' The volume-stricti on
()lInV/(oE)2 = dllll + 2d1122, a scalar in-
variant in PSG m3m, is positive in all in-
vestigated alkali halides and increases
with decreasing elastic stiffness. The
close correlation between volume-stric-
tion and the quantity alK = yC vl3 V
(a linear coefficient of thermal expan-
sion, K compressibility, V molar volume,
Cv specific heat capacity at constant
strain, y Grtineisen parameter) shows the
anharmonic nature of quadratic electro-
striction.

The longitudinal effect d'llll =
U1iUljUlkUI/dijkl (Uli direction cosine) pos-
sesses a strong anisotropy with distinct
maxima and minima along (100) and
(Ill), respectively (Fig. 2). At first
glance the coincidence of the maxima of
d'l] II and of the longitudinal elastic stiff-
ness in most alkali halides is surprising.
The different behavior of lithium fluoride
(Fig. 2), however, indicates that the ori-
gin of the electrostrictive anisotropy is
different from the origin of the elastic an-
isotropy. The relative sizes of the cations
and anions dictate the directions with
close contacts between neighboring ions.
Correspondingly, the maxima of the lon-
gitudinal elastic stiffness appear in lithi-
um halides along (Ill) whereas in other
alkali halides the maxima are observed in
(100) directions. In contrast to the elastic
behavior the anisotropy of the quadratic
electrostriction is nearly independent of
the radius ratio. The dominant contribu-
tions to the macroscopic electrostriction
stem from the polarizability of the ions
and from dispersive interactions between
opposite charged ions. This picture is
confirmed by lattice energy calculations
based on empirical force fields [5][10].
Sufficient agreement between theory and
experiment is only achieved by model
calculations which adequately take into
account short-range interactions.

Although it is not yet a routine exami-
nation, our capacitive dilatometer as well
as the sophisticated, but slightly less ac-
curate double-beam Michelson-interfer-
ometer recently constructed by Sterken-
burg et al. [7] allow for the determination
of reliable quadratic electrostrictive coef-
ficients.

It is expected that a larger amount of
experimental data will become available
soon and thus will give new impetus to
the study of quadratic electro-striction in
centrosymmetric crystals.
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and pOSItIon of the conducting wires.
Fortunately, in most cases large intervals
without such spurious effects can be
tracked down by frequency dependent
measurements.

2.2. Example: Quadratic
Electrostriction in Alkali Halides

Currently, the quadratic electrostric-
tive coefficients of alkali halides deter-
mined with the aid of the new capacitive
dilatometer are likely to be regarded as
the best available. Earlier experimental
data, the spread of which was interpreted
by a strong dependence of quadratic elec-
trostriction on impurities and defects [9],
should be considered with some reserva-
tion. It cannot be excluded that these data
suffer from spurious effects as outlined in
the previous section.

According to the results obtained by
Schreuer and Haussiihl [8] on eight alkali

Fig. 1. Sketch of our capacitive dilatometer. 1: electrically shielded oscillator chamber, 2:
reference crystal holder, 3: reference crystal, 4: plate capacitor, 5: electrical shielding, 6: sample,
7: sample holder, 8: adjustable support.

2

trostrictive deformation of the sample
can be derived from the phase difference
,1f/J = f/Js - f/Jrc of the LockIn signals pro-
vided that the polarity of the reference
crystal is known.

In order to achieve high resolution of
about ,11 '" 2.10-13m thorough measures,
as for example good electrical and ther-
mal shielding and excellent vibration iso-
lation, have to be taken to minimize ex-
ternal disturbances. The most critical
source of errors are Coulomb-interac-
tions between certain parts of the
dilatometer. Particularly, the high-volt-
age of up to 3 kV required for the investi-
gation of very small quadratic effects
leads to strong electromechanical vibra-
tions which superimpose the strain signal
caused by the electro stricti ve effect of the
sample. It is practically impossible to
avoid electromechanical resonances, be-
cause they depend on shape, dimension
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Fig.2. Representation surfaces of longitudinal elastic stiffness C'IIII = UliUljUlkulluijkl (Uli direction
cosine, i= 1,2,3) and of the longitudinal effect d'llll = UliUIPIkUlld'ijklOf quadratic electrostriction
in LiF. (a),(b):surface of c'llll viewed along [100] and [111], respectively. (c),(d):surface of d'lill

viewed along [100] and [111].

2.3. Thickness Dependence of
Converse Piezoelectric Effects

While testing the high-resolution ca-
pacitive dilatometer an unexpected thick-
ness dependence of the longitudinal con-
verse piezoelectric effect was discovered
along the polar directions of certain pie-
zoelectric crystals.

The well reproducible thickness ef-
fect (Fig. 3) was first observed on thin
plates of a-quartz (X-cuts of synthetic
and natural crystals with diameters and
thicknesses in the ranges 12-40mm and
O.08-13mm, respectively). For I > O.5mm
dIll increases in proportion to the recip-
rocal thickness l/l of the specimens. With
thinner plates dill gradually reaches a
constant value. Crystals of LiNb03,
NaBr03, Li2S04·H20 and benzil show a
similar behavior whereas in CS2S206 no
influence of the sample thickness on d333
is observed. The electrostrictive effect
along the six-fold axis in lithium iodate
even decreases rapidly with decreasing
thickness. Due to the specific behavior of
the different crystal species, systematic
errors originating from the experimental
set-up cannot account for the strange
thickness dependence. Further distur-
bances from electrode effects, excitation
of vibrational modes of the samples,
boundary conditions and sample mount-
ing have been excluded by experiments.

A simple sandwich model, which is
based on the assumption that the electro-
strictive properties of the surface zone
differ from those of the bulk material, al-
lows for a qualitative interpretation of the
observed thickness effects. In the case of
quartz the model yields a thickness of
about 100-150 ~ for the surface zone.
The electrostrictive effect d1f{'iface = 8.5·
1O-12mV-1is about a factor 3.7 enlarged
compared to the value dlfIu1k of the bulk
crystal (l ~ 00). The reason for the varia-
tion of electrostrictive propelties in sur-

Fig. 3. Relative deformation tJ - As I Arc of two
synthetic X-cut a-quartz plates with different
thicknesses but equal diameters ofabout 20 mm
as a function of the applied voltage. Reference
crystal is a disk-likespecimen ofX-cut a-quartz
with diameter of 20 mm and thickness of
1.872 mm.
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face zones is not yet clear. It is probable
that defects which are induced by the
preparation procedure play an important
role. Further investigations are in progress.

The most surprising aspect of the
thickness effect is not the existence of a
surface layer possessing different proper-
ties, but its extension. A cube with edge
lengths of 0.5 mm, 1 mm and 5 mm and
surface zones of about 100 J..lmthickness
consists of 78%, 49% and 12% surface
zone, respectively. With regard to the on-
going miniaturization of experimental
set-ups careful investigations of potential
surface zones and their influence on the
experimental determination of various
physical properties are essential.

3. Elastic Properties of Crystals

Elasticity provides one of the most
useful probes for the exploration of struc-
ture-property relationships. As spring
constants elastic stiffnesses are directly
related to the three-dimensional network
of interatomic interactions in the crystal
and, consequently, to many other of its
thermodynamical properties. Hence,
elastic constants permit subtle tests of the
reliability of atomistic model calcula-
tions. Further, elastic constants are highly
sensitive to structural instabilities con-
nected with phase transitions. Character-
istic anomalies of the elastic behavior al-
low not only the detection of phase tran-
sitions but offer valuable hints on the
driving mechanisms [11].

In the linear approximation of
Hooke's law the components eJij of the
mechanical stress tensor and the compo-
nents £ij of the strain tensor are related by
eJij = Cijkl£kl where {cijd is the elasticity
tensor [12]. In the case of electrostrictive
crystals Hooke's law must be completed
by additional terms which take into
account electro-mechanical coupling
effects. For small deviations from equi-
librium the mechanical and electrical var-
iables of the corresponding thermody-
namic potential are related by

_ l! I: ,f £:a a¢
(T -c~lJ-e H '. I,;'Jll'" +e/qj "-

('x, "".
. a~ ~ flf/JD=e-~ +~ E =e .:..:a-E -

I .u-lJ 'p I 101 ex I u ax I

where E is the electric field vector and D
the electric flux density. ~k denote the
components of the displacement vector, <I>

is the electric potential and {E ij} repre-
sents the tensor of the dielectric con-
stants. eijk are the components of the pi-
ezoelectric stress tensor which are related

to the coefficients dijk of the piezoelectric
tensor according to emij = dmk,cSkl' Super-
scripts Sand E indicate adiabatic condi-
tions and constant electric field, respec-
tively.

Due to their symmetry properties, the
elastic stiffnesses Cijk{ are usually written
in an abbreviated form employing
Voigt's notation, i.e. the index pairs ij
and kl are replaced by simple indices ac-
cording to ij ~ i for i =j and ij ~ 9-i-j for
i:;t:j. Four types of elastic constants Cij can
be distinguished:
CII>C22, C33 longitudinal elastic

stiffnesses,
C12,C13, C23 transverse interaction

coefficients,
C44, C55, C66 elastic shear stiffnesses,
C14,c15,C16,etc. coupling coefficients.

The number of independent elastic
constants of a crystal depends on its point
symmetry group. For example, 21 con-
stants Cij have to be determined in order
to describe the elastic behavior of a tri-
clinic crystal whereas in cubic crystals
the knowledge of three constants (e.g.
CII>Clb C44) is sufficient. Details about
the symmetry reduction of property ten-
sors can be found in many text books
dealing with crystal physics and applica-
tions of group theory [12-14].

3.1. Empirical Rules
For new compounds simple heuristic

and empirical rules allow quick estima-
tion of the order of magnitude of certain
physical properties (e.g. dielectric behav-
ior, refractive indices, certain non-linear
optical properties and mean elastic stiff-
ness). These rules are based on the as-
sumption that the constituents of the
crystal yield quasi-persistent additive
contributions to the various physical
properties. Once the crystal structure is
known, one can further deduce a qualita-
tive picture of the anisotropy of the prop-
erties.

Haussiihl [15] discovered that the
quantity S = c· Mv, defined as the prod-
uct of the mean value of the principal
elastic constants C = (CII+ C22 + C33 + CI2
+ cn + c23 + C44+ c55 + C66)/9 and the
molecular volume Mv, opens the possi-
bility to estimate the mean elastic stiff-
ness of ionic crystals provided that chem-
ical composition and density are known.
The S-value varies only slightly within
isotypic crystals and chemically related
compounds. Furthermore, in ionic crys-
tals the S-value can be decomposed in
additive contributions S(X;) of the con-
stituents Xi of the compound X according
to S(X) = IS(X;). The quasi-additivity of

the S-values holds within 10% for a large
variety of compounds, including spinels,
perovskites, garnets and feldspars. Even
the influence of water of crystallization
can be separated. On the other hand devi-
ations from the rule yield hints on anoma-
lous bonding contributions.

One approach to the qualitative inter-
pretation of the anisotropy of the longitu-
dinal elastic stiffness C'llll=UliUlPlkUlICijkl

is provided by the system of principal
bond chains (PBC-vectors according to
Hartman and Perdok [16]). Often the
maximum of C'llll corresponds with a
minimum of the longitudinal thermal ex-
pansion a'ij=uI iUljay and both usually oc-
cur along the direction of the strongest
PBC-vectors (Fig. 4). Instructive exam-
ples can be found among the phthalates
[18], oxalates [19] and tetroxalates [20].
However, the description of the bonding
system in terms of PBC-vectors is not
fully compatible with the interpretation
of the elastic stiffnesses as spring con-
stants, because it neglects the spatial ar-
rangement of the bonds within a periodic
bond chain. The alkali feldspar sanidine,
KAISi30g, represents a prominent excep-
tion from the rule. Due to the zigzag-like
character of the strongest bond chains
running parallel to the aI-axis a longitu-
dinal deformation along [100] is mainly
caused by small changes of the O-Si-O
bond angles instead by compression or
dilatation of the rather stiff Si-O bonds.
Consequently, in sanidine the maximum
of C'1I11is observed along [010], i.e. it is
located in the plane perpendicular to the
main bond chains.

A hint on the nature of the bonding
interactions in crystals can be derived
from the deviations from Cauchy rela-
tions [21] represented by the second rank
tensor invariant {gmn} with the compo-
nents gmn = emikenj{cijd2, where eijk de-
note the components of the Levi-Civita
symbol. In metallic and ionic crystals,
particularly in those built up from aspher-
ic ions and constituents with large polar-
isability, the transverse interaction coef-
ficients dominate considerably over the
corresponding shear stiffnesses resulting
in positive deviations from Cauchy rela-
tions. Strong covalent or other bonds
with preferential directions cause oppo-
site effects. Extreme examples are gold
and diamond with gIl"" + l2·1010Nm-2
and gIl "" -24·1010Nm-2, respectively.
Crystals possessing a layer-like structure
such as gypsum and micas show often a
distinct minimum of the deviations from
Cauchy relations along the direction per-
pendicular to the plane of the layers indi-
cating covalent bonding contributions
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Fig. 4. Correlation between longitudinal elastic
stiffness (a), longitudinal effect of thermal ex-
pansion (c) and crystal structure (b) of trigonal
((CH3bNCH2COOb-2MnCI2 [17].

within and weaker Coulomb or van-der-
Waals interactions between the layers.

A more quantitative interpretation of
elastic behavior can be obtained from lat-
tice energy calculations [1]. Within the
framework of thermodynamical poten-
tials elastic constants are defined as sec-
ond order deri vati ves of potential func-
tions, e.g.

u

Here V = U( {Ejj} ,D,S) is the free ener-
gy, and Eij, D and S are the components of
strain tensor, the electric flux density and
entropy, respectively.

3.2. Experimental Determination of
Elastic Constants

Many different techniques covering
broad frequency-, temperature- and pres-
sure-ranges are available for the experi-
mental investigation of elastic properties
[22]:

• Static methods including stretching,
bending and torsion experiments.

• Dynamic methods such as periodic
stretching, bending and torsion exper-
iments at frequencies below the first
mechanical resonance frequency of
the sample.

• Ultrasonic methods based on excita-
tion of ultrasonic waves in the sam-
ple, e.g. normal and improved
Schaefer-Bergmann method, pulse-

echo techniques, acoustic resonance
methods.

• Scattering methods: scattering of pho-
tons or neutrons on thermal phonons,
e.g. Brillouin spectroscopy (scatter-
ing of light on acoustic phonons), Ra-
man spectroscopy (light scattering on
optical phonons), thermal diffuse x-
ray scattering (Compton scattering of
X-ray photons), inelastic neutron
scattering (phonon spectroscopy).

Other techniques such as the investi-
gation of surface acoustic waves or the
application of atomic force microscopy
are still in an early stage of development.
The potential of laser-induced phonon
spectroscopy, LIPS [23], and ultrasonic
interferometry in the GHz frequency re-
gime [24] for use with diamond-anvil
cells under high pressures is currently ex-
plored. Other methods even allow for im-
aging of phonon propagation in crystals
[25].

The most accurate determination of
elastic constants in the important acoustic
frequency regime is facilitated by ultra-
sonic techniques. Conventional ultrason-
ic methods actually determine the veloci-
ties of ultrasonic plane-waves injected
into the sample. The velocities are
derived either from the traveling time of
short ultrasonic pulses (pulse-echo tech-
niques) or from resonance frequencies of
thick plane-parallel plates (improved
Schaefer-Bergmann method, impedance
method). Although these techniques are
highly sophisticated, their application is

limited by a number of problems includ-
ing transducer ringing, transducer-sam-
ple coupling, beam diffraction, the sam-
ple size, and the necessity of measuring
samples with different orientations in or-
der to estimate all independent elastic
constants.

3.3. Resonant Ultrasound
Spectroscopy

In the last three decades a very power-
ful alternative experimental approach has
become available due to significant ad-
vances in computer technology: resonant
ultrasound spectroscopy (RUS). Here the
elastic constants are derived from an ex-
perimentally measured ultrasonic reso-
nance spectrum of a freely vibrating crys-
tal with well-defined shape (Fig. 5). The
main advantages offered by RUS are (i)
the elastic, piezoelectric and dielectric
properties of the crystal can be in princi-
ple simultaneously studied on one sam-
ple, (ii) the small sample size, (iii) no
medium is required for transducer-sam-
ple coupling and (iv) the very short data
acquisition time. Detailed reviews of this
very promising technique have been re-
cently published [26]. The principles of
RUS and its advantages and challenges
(if not to say disadvantages) are briefly
described in this section.

The natural vibrational modes of a
sample correspond to stationary solutions
of its Lagrangian

L = J ( I.Jncuc - pol nil.! )dV
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Following Hamilton and using the
Ritz prescription, i.e. expanding the dis-
placement vector ~ = ~iei and the electric
potential <I> in sets of basis functions {1m},
{gm} according to ~i = aim!m and <I> = bm
8m' respectively, one obtains stationary
solutions by solving the general eigen-
value problem

(G.+·p-lt{t).a :p~Ma (1)
l;).'!All:'-ll(ta

where v = m/2T[ are the corresponding
resonance frequencies and p is the mass
density of the sample. The coefficients of
the matrices G, K, E and M depend on
the shape and dimensions of the sample
as well as on the coefficients of the elec-
tromechanical property tensors of the
crystal:

Oij denotes the Kronecker symbol. To
keep the computational effort within rea-
sonable limits, the size of the matrices
must be restricted by the use of a truncat-
ed set of appropriate basis functions. A
suitable choice are powers of Cartesian
coordinates !m=x]p] xf'2xl3 ,m= (P],P2>P3),
because these functions can be easily ap-
plied to samples with simple shape
(spheres, ellipoids, rectangular parallele-
pipeds, rods, cones etc.). The truncation
condition T ~ PI + P2 + P3 leads to N =
(T + 1)(T + 2)(T + 3)/6 independent basis

functions for the approximation of the
electric potential and of each component
of the displacement vector. While in cu-
bic crystals about 1000 basis functions
give a good compromise between accura-
cy and computing time sets of about 4000
basis functions or more are required in
the case of monoclinic or triclinic crys-
tals in order to avoid significant trunca-
tion errors.

Unfortunately, no analytical solution
exists for the inverse problem. Thus the
sample parameters have to be evaluated
by an iterative non-linear least-squares
procedure that matches observed and cal-
culated resonance frequencies by adjust-
ing values for the independent parame-
ters. The convergence of a refinement de-
pends critically on the proper choice of
the initial values. Statistical [27] and ex-
perimental [28] procedures were pro-
posed for mode identification in samples
with high symmetry from which the deri-
vation of starting values c8 is expected.
However, the use of conventional tech-
niques for the determination of appropri-
ate c8 values is still necessary for crystals
with low symmetry.

The progress of the refinement proce-
dure is further affected by a number of
errors originating from mechanical load
on the sample, misorientation of the sam-
ple, deviations from the ideal shape and
crystal defects. In particular, two-dimen-
sional defects such as twin boundaries
and cracks can make the quantitative in-
terpretation of a resonance spectrum im-
possible because the sample has to be
considered as a system of two or more
resonators of unknown shape and dimen-
sions coupled by springs of unknown
force constants. More homogeneously
distributed defects with dimensions
much smaller than the elastic wavelength

usually do not restrict the application of
RUS.

Different experimental set-ups suited
for samples of about] 00 ~ up to several
meters in size and covering the temper-
ature range from about 4K to I800K have
been reported (see [26] and references
therein). RUS-apparatus for routine
measurements are already commercially
available [29].

For crystals with piezoelectric effects
larger than about 30% of dIll of a-quartz
and moderate dielectric constants the pi-
ezoelectric contribution to eigenfrequen-
cies, as included by the term KKIKr in
(1), can be forced to be considerably larg-
er than the experimental error (the repro-
ducibility of experimental resonance fre-
quencies is usually ±O.l KHz or better)
by choosing an appropriate sample size.
Due to the strong anisotropy of piezo-
electric properties, fortunately, in most
cases no starting value problem exists for
the computation of piezoelectric con-
stants from resonance frequencies [30].
Employing the following procedure

• Step I: Prerequisites are the precise
knowledge of dielectric constants and
of proper starting values for the elas-
tic constants.

• Step 2: Refinement of cij neglecting
piezoelectric coupling effects.

• Step 3: Simultaneous refinement of
elastic and piezoelectric constants us-
ing any set of initial e;Jk values.

and using elastic and dielectric constants
listed in Landolt-Bornstein [31] we were
able to derive piezoelectric stress con-
stants from ultrasonic resonance spectra
in excellent agreement with literature
data (Table 2). Larger deviations of up to
30% from literature values are only ob-
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Fig. 5. (a) High-temperature RUS: A sample of
monoclinic sanidine, KO.S9Nao.11AISi30S'pre-
pared as rectangular parallelepiped with edge
lengths of about 5 mm is weakly clamped on
two opposite corners by alumina buffer rods
which act simultaneously as sample holder
and as ultrasonic wave guides. Two piezoelec-
tric transducers operating as ultrasonic gener-
ator and detector, respectively, are glued to the
ends of the buffer rods outside the heated area.
The central alumina tube supports a thermo-
couple. (b) Part of the resonance spectrum of a
spodumene (LiAISi206) sample showing four
sharp eigenmodes. Note the logarithmic scale
of the signal amplitude.
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Table 2. Electromechanical coupling effects in selected piezoelectric crystals. N shift of
resonance frequencies of the respective samples induced by electromechanical coupling;fo.Jc
observed and calculated resonance frequencies; L1eijk= I (e~~- eijk)leijkI relative difference
between ejjkcalculated from resonance spectra and literature data ej~Btaken from [31]. Resonance
spectra have been collected on samples which are prepared as rectangular parallelepipeds with
edge lengths in the range 4-9 mm.

Compound PSG l/ Ifdol IJk data/parameter

(maximum) (average) (average) ratio

(KHz] [KHz] [%]

NaBr03 23 0.2 0.28 0.5 12.5

CS2S206 6m 4.3 0.27 1.0 8.0

tourmaline (elbaite) 3m 1.0 0.24 2.8 8.1

LINb03 3m 50.9 0.57 3.2 7.8

Si02 (Ct.-quartz) 32 0.3 0.19 0.5 8.6

La3Ga5Si014 32 4.0 0.23 0.2 9.1

L12S04 H2O 2 4.4 0.21 6.7 6.3

served for some of the small constants of
monoclinic lithium sulfate monohydrate.

In summary, the RUS-technique is al-
ready a standard tool in non-destructive
material testing. Other promising appli-
cations are the investigation of piezoelec-
tric coupling phenomena, the study of the
temperature dependence of elastic prop-
erties and the detection of phase transi-
tions. The focus of current research is on
the most challenging problem connected
with the RUS-method: the derivation of
proper initial values for the elastic con-
stants from resonance spectra. Due to the
ongoing rapid advances in computer
technology the application of statistical
and simulation methods will become fea-
sible soon. An alternative approach is the
estimation of starting values by lattice
energy calculations [3].
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