Protein Analytics with Surface Plasmon Resonance Technique and Capillary Electrophoresis

Daniel Gygax*, Matthias Weber, Peter Spies, and Ingrid Weis

Abstract: Surface plasmon resonance technique and capillary electrophoresis are methods which are used in the Bioanalytics Group of the Chemistry Department at the University of Applied Sciences Basel (FHBB) in the attempt to characterize the integrity, purity, and function of relevant proteins in drug development, diagnostics or tissue engineering. Currently we are collaborating with Prionics AG in Zürich, ZLB Bioplasma AG in Bern and the Zürcher Hochschule in Winterthur.

Keywords: Bioanalytics · Protein · Biosensor · Biospecific Interaction Analysis · Capillary electrophoresis · Prion · BSE

With the Human Genome Project rapidly approaching closure, the products of transcripts of genomic DNA, the proteins, will become objects of increased interest also in applied Research and Development. Based on this view, the activities in protein analytics in the Department of Chemistry focus on two novel techniques: the Biacore chip-based biospecific interaction analysis technology and capillary electrophoresis. Using these methods we attempt to characterize the integrity, purity and function of relevant proteins in drug development, diagnostics or tissue engineering.

Biospecific Interaction Analysis

Biacore chip-based technology is based on the optical phenomenon of surface plasmon resonance, which detects changes in the refractive index of the solution close to the surface chip. The refractive index is directly related to the mass concentration in the surface layer and increases when analytes bind to an immobilized ligand, like an antibody, a receptor, a biomolecule or a small organic compound bound to a carrier protein. The experiments are performed under continuous, controlled flow conditions thus allowing observation - without an additional label - of the progress of the binding between specific molecules in real time. Consequently, the sensorogram reflects both the time course of the interaction and the amount of analyte bound (Fig. 1).

The use of Biacore chip-based technology for applied research was explored using two different approaches: on the one hand the binding of concanavalin A...
The bovine spongiform encephalopathy-specific form of PrP_{BSE} is a disease-specific marker which is independent of clinical signs and pathology. Even more importantly, this form of PrP is present before the appearance of clinical signs [3]. The goal of current research and development in this area will be to improve existing tests for rapid and reliable measurement of PrP_{BSE} primarily with regard to sensitivity. Improved assays might enable measurement of PrP_{BSE} in blood or spinal fluid is highly demanded for a systematic screening of the cow populations of BSE-contaminated regions.

The comparative determination of kinetic and affinity parameters provides data for the evaluation and selection of antibodies used in diagnostics. In collaboration with Prionics AG, in Zürich and ZHW (Zürcher Hochschule Winterthur), we compared the binding characteristics of two monoclonal antibodies against the cellular prion protein (PrP) immobilized to the carboxylated dextran matrix of a sensor chip. The sensorgrams of the two antibodies depicted in Fig. 4 clearly demonstrate that the two antibodies bind the prion with different on- and off-rates. From this data it was calculated that the prion binding affinity of mAbl is roughly two orders of magnitude larger than that of mAb2. Some key parameters characteristic of this type of experimental protocol are the small amount of ligand immobilized to the chip (2.9 ng/mm²), the low sample volume (45 μl) and the short assay running time (400 sec).

To summarize, the Biacore-chip-based biosensor allows the determination of the kinetic binding constants of the interaction between the prion protein and monoclonal antibodies. Thus, this method is generally an interesting tool for the screening and selection of novel antibodies.

Capillary Electrophoresis

Capillary electrophoresis (CE) is a highly efficient separation technique based on principles of electro-osmosis and electrophoresis. It is a very attractive mode of separating proteins and peptides because of its simplicity, its relatively high resolving power in separation and its flexibility in manipulating separation parameters by static and dynamic coatings [4].
For ZLB Bioplasma AG in Bern capillary electrophoresis could be an alternative method for the quality control of blood derived proteins and might be able to deliver comparable results to the acetate electrophoresis method already approved by the FDA. The purpose of our investigation was to demonstrate comparability of data arising from acetate electrophoresis and capillary electrophoresis using normal serum and purified albumin from human blood.

With a novel CE method (Fig. 5) normal human serum protein could be separated into its major components (gamma-, alpha 1- and 2-, beta-globulin and albumin). Two of them, namely, albumin and gamma, could be measured with good precision. Furthermore, the results agree well with those obtained by acetate electrophoresis. The quantification of purified albumin from human blood by CE [5] shows good correlation with conventional cellulose acetate paper electrophoresis; with regard to precision, speed, and automation, CE is even superior. Fig. 6 shows the electropherogram of human albumin. In order to assess assay reproducibility, key performance parameters were determined in twelve consecutive runs. The mean ratios of the area under the signal intensity curves of human serum albumin to the impurity was 1513.7 kAU to 1.1 kAU with coefficients of variation of 6.2% and 7.91%, respectively. The purity of the human serum albumin was >99%. The mean value of the migration time for human serum albumin was 6.8 min with a coefficient of variation of 0.65%.

In conclusion, the new CE methods presented could be the basis for the quality control of blood derived proteins.

Received: May 11, 2001