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NMR Study of the p-DNA Duplex
[(4'>2')-3'-Desoxyribopyranosyl-
("CGDDTT™CG),] and Comparison
with its p-RNA Analogue

Marc-Olivier Ebert3, Damian Ackermann2b, Stefan Pitsch2p, and Bernhard Jaun@*

Abstract: The determination of the solution structure of small non-natural oligopeptides and oligonucleotides
by NMR, which is one of the main research topics of our group, is illustrated on the example of an 8-mer
p-DNA duplex. p-DNA, the 3'-desoxy analogue of p-RNA, forms an highly selective pairing system but its
pairing strength is less than that of analogous p-BNA sequences. The NMR study reveals that the backbone
of p-DNA corresponds more closely to the conformation predicted for pentapyranose nucleic acids by
qualitative conformational analysis than p-RNA.
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Iintroduction

As demonstrated by Eschenmoser and
coworkers, p-RNA, the 4'—2' phos-
phodiester linked ribopyranosyl isomer
of RNA (Fig. 1), forms very strong anti-
parallel duplexes according to the
Watson-Crick pairing mode [2]. In fact,
the pairing strength of such p-RNA du-
plexes is much higher than that of the cor-
responding RNA and DNA duplexes. In
contrast to the naturally occurring nucleic
acids, no reverse-Hoogsteen or Hoogs-
teen base pairs have been observed for
p-RNA, which makes it a more selective
pairing system than either RNA or DNA.

In the context of finding new strate-
gies for an easy and eventually combina-
torial preparation of functional RNA-
structures (such as aptamers and ribo-
zymes), two of us (D.A., S.P.) wanted to
develop a general method for substituting
RNA-hairpin motives by complementary
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duplex structures (Fig. 2). In order to
avoid any interaction between the func-
tional part of these molecules (consisting
of RNA or DNA) and the hairpin-substi-
tuting duplex structures, the latter should
preferentially be formed from an unnatu-
ral, autonomous pairing system that pairs

only with itself, but not with RNA or
DNA. As a strong, selective, and autono-
mous pairing system, p-RNA was in prin-
ciple ideal for this purpose. Unfortunate-
ly, due to the harsh conditions required
to remove the 3'-O-benzoyl protecting
group, the synthesis of p-RNA oligonu-
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Fig. 1. Structural formulae and definition of backbone angles for p-RNA, p-DNA and RNA. The
designation of backbone angles was chosen in analogy to the natural systems [1].
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cleotides was not compatible with RNA-
synthesis and therefore, the correspond-
ing 3'-desoxy analogue (‘p-DNA’) was
prepared instead [5]. The new pairing
system p-DNA (‘pyranosyl-DNA’) con-
sists of 3'-desoxy-B-D-ribopyranose nu-
cleotides which are connected via 4'—2'-
phosphodiester moieties (Fig. 1). The
conditions for their assembly from the
corresponding phosphoramidite building
blocks and for the final deprotection pro-
cedure are fully compatible with the con-
ditions employed for RNA synthesis with
2'-O-TOM-protected = RNA-phospora-
midites [6].

With the four canonical bases,
p-DNA oligonucleotides form weaker
duplexes than corresponding p-RNA se-
quences. However, by replacing the natu-
ral nucleobases adenine and cytosine
with the analogues 2,6-diaminopurine
(D) and 5-methyl-cytosine (™C), respec-
tively (Fig. 1), a substantial increase in
pairing strength was achieved; p-DNA
duplexes forming D-T and G- ™C base
pairs have almost identical pairing prop-
erties as the corresponding A-T and G-C
containing p-RNA duplexes.

We have reported earlier on a detailed
NMR study of the solution structure of
the p-RNA octamer duplex p-(CGAAT-
TCG), [7]. In view of the close analogy
between the constitutions of p-RNA and
p-DNA, it was reasonable to presume
that their solution structures would also
be similar. However, the reduced pairing
strength of p-DNA must be due to struc-
tural differences. These may be impor-
tant for the prediction of the exact shape
of p-DNA duplexes to be employed as
hairpin-substituting elements in larger
RNA or DNA constructs of complex ter-
tiary structure. Here, we present the pre-
liminary results of our NMR study of the
p-DNA duplex (4'>2") 3'-desoxyri-
bopyranosyl-("CGDDTT™CG),, which
has the same sequence than the p-RNA
duplex studied earlier, except for the sub-
stitution of C by ™C and of A by D.

Results

The NMR-experiments (500 MHz 'H)
were carried out at 26 °C with a 10 mM
sample of the title compound dissolved
either in D,0O or in H,0/D,0 9:1, each
buffered with 50 mM sodium arsenate at
pH = 7.0. The 'H (Fig. 3), 3C, and 3'P
NMR spectra all show the number of sig-
nals expected for twofold symmetry on
the NMR time scale. The sequential as-
signment of the non-exchangeable pro-
tons was done in a standard way by com-
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Fig. 2. Functional nucleic acids, such as ribozymes (top left: Hammerhead ribozyme [3]) and
aptamers (top right: FMN-binding aptamer [4]) consist, in general, of only one oligonucleotide
strand. The functional part of these compounds is usually formed by non-Watson-Crick-paired
nucleosides, which form bulges or internal loops (on the level of secondary structure). These
elements are able to form a diversity of functionalized, chiral and concave sites (on the level of
tertiary structure) which, in analogy to proteins, are able to selectively bind other molecules by
H-bonding and r-stacking. The ribozyme (top left) binds a complementary RNA-sequence (in
red), which is subsequently cleaved at the position indicated by the arrow; the aptamer (top right)
binds a molecule FMN (flavine mononucleotide). The spatial organization of the functional
residues is provided by Watson-Crick-paired regions, forming duplex and/or stem-hairpin
structures (highlighted in green). We are planning to substitute these structural elements by
complementary p-DNA-duplexes (bottom, indicated in green), thus forming functional oligonu-
cleotide-motives from several strands and avoiding interactions between the structural and
functional parts.

bination of COSY and NOESY. Sequen-
tial connectivities could be additionally

consistent with a chair conformation of
the six-membered rings. The H-bearing

confirmed by P,H-COSY. The stereospe-
cific assignment of the geminal protons
at C(3") and C(5") was based on the ex-
pected strong NOEs between the axial
positions in the pyranose ring as well as
on a qualitative analysis of the vicinal
proton—proton coupling constants result-
ing from inspection of the peak sizes in
the COSY spectrum. All findings are

carbons were assigned by HSQC. The 'H
NMR spectra measured in H,O/D,0 9:1
with solvent suppression by excitation
sculpting showed three sharp resonances
in the low field region which were as-
signed to the imino protons of the six in-
ner base pairs. Due to fast rotation, the
two NH, protons of guanosines and of
both amino groups of 2,6-diaminopu-

b
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Fig. 3. '"H NMR spectra of the title compound in a) D,O and b) D,0O/H,0 9:1. Conditions: ¢ = 10
mM, 50 mM Na arsenate buffer, pH = 7.0, T = 300 K.
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rines appeared as single broadened sig-
nals, whereas for ™C7 , the two protons
of the amino group showed distinct reso-
nances. Vicinal 'H-3'P coupling con-
stants were determined from the differ-
ence in the linewidth of traces (power
mode) through COSY cross peaks meas-
ured with and without 3'P decoupling.
The resulting values were 3Jyypy = ca.
2 Hz and 3Jy4p4 = ca. 7 Hz. Severe over-
lap in the '3C spectrum prohibited the
determination of 3Jcp coupling constants
except for Joypy which was ca. 12 Hz.
These findings are consistent with
€ =-60° and B = +160°.

A series of NOESY spectra with dif-
ferent mixing times, both in D,O and
H,0/D,0 9:1, allowed a total of 140
NQOE derived distance restraints to be as-
sembled. Together with the torsional an-
gle constraints derived from the coupling
constants through Karplus relations, they
were used to generate an ensemble of
structures that are consistent with the ex-
perimental data by torsional angle mole-
cular dynamics calculations [8].

Discussion

Qualitative conformational analysis
predicted a quasi linear backbone for
pentapyranose-derived oligonucleotides
with the 2'- and 4'-OH groups in equatori-
al positions [9]. Our earlier NMR study
of a p-RNA duplex confirmed the general
aspects of this prediction, but also re-
vealed significant deviations of the back-
bone angles € and  from their idealized
values of —60° and 180°, respectively
(Fig. 4). With ca. 40°, the inclination of
the mean base pair axis towards the back-
bone axis is stronger than in the idealized
structure and the n—7 stacking distance is
shorter. Three possible causes for these
adjustments of the backbone of p-RNA
were discussed: a) avoidance of the unfa-
vorable interaction between the 3'-hy-
droxy group and one of the phosphate
oxygens; b) a decrease of the n—r stack-
ing distance between neighboring base
pairs towards the optimal value of ca.
3.5A;and ¢) an increased shift of neigh-
boring base pairs to achieve optimal in-
terstrand stacking.

The NMR study presented here shows
that in p-DNA, the value of ¢ is within
experimental error of the idealized value
of —60°. The angle B is ca. 160°, about
midway between p-RNA (145°) and the
idealized value (180°). As in p-RNA, the
pyranose sugar rings assume nearly per-
fect chair conformations in p-DNA.
Overall, the backbone of p-DNA corre-

sponds more closely to the idealized
structure than that of p-RNA (Fig. 4). The
fact that the angle ¢ is reduced to the val-
ue of —60° if the 3'-OH group is replaced
by a hydrogen confirms hypothesis a)
above. The determination of the base-
pair inclination proved to be more diffi-
cultin p-DNA than in p-RNA. Due to the
replacement of A by D in the p-DNA du-
plex studied here, the H-C(2) protons of
adenine, conveniently placed in the mid-
dle of the minor groove and therefore
crucial for measuring interstrand distanc-
es in p-RNA, are missing. The determi-
nation of the glycosidic angle y, which is
directly correlated with inclination, had
therefore to be based on NOE-derived
relative interresidual distances H-C(8/6)-
H-C(2') and H-C(8/6)-H-C(4"). This meth-
od of determining y is inherently less pre-
cise than the use of interstrand correla-
tions, because the intraresidual NOEs are
much more affected by either spin diffu-
sion or small scale dynamics. Neverthe-
less, simulated annealing calculations
with all distance and dihedral angle re-
straints derived from the NMR data con-
verged to the bundle of structures shown
in Fig. 5a. With the exception of the ter-
minal base pairs, which show the usual
fraying ends, the resulting overall struc-
ture is quite well defined and no experi-
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mental constraints are violated. Howev-
er, we doubt whether this result can be
correct. The calculated conformation
type is characterized by a glycosidic an-
gle ¢ between —100° and -120°, a much
smaller inclination than in p-RNA and a
very large n-r distance of 4.5-5.5 A
(Fig. 5b). Such a large distance between
neighboring basepairs is very difficult to
accept because, not only in natural RNA
and DNA but also in the other pentapy-
ranose-NA systems studied so far [10],
the m—m stacking distance was always
near the ideal value of ca. 3.5 A. In fact,
the ideal interstrand m-m stacking be-
tween purine/purine and purine/pyrimi-
dine is considered to be a major factor
contributing to the high pairing strength
in p-RNA. This raises the question wheth-
er the practically unstacked structure re-
sulting from our calculation might be due
to a systematic error in the analysis of the
NOE data, in particular, the neglect of
dynamic averaging. The structure shown
in Fig. 6 (obtained by simple energy min-
imization of a starting structure that con-
tained the experimentally determined
backbone angles and hydrogen bonds as
sole constraints) demonstrates that a con-
formation of p-DNA with strong inclina-
tion and good interstrand stacking similar
to that in p-RNA would in principle be
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Fig. 4. Comparison between the backbone angles B and ¢ of p-RNA and p-DNA as determined
experimentally by NMR. The values predicted for the idealized pentopyranose structure are
indicated in black.
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consistent with the experimentally deter-
mined backbone angles. Further work, in
particular, MD calculations with dynam-
ic averaging and NMR analysis of the
same p-DNA sequence containing ade-
nine instead 2,6-diaminopurine is needed
in order to resolve these questions.

The difficulties encountered with some
of the structure determinants of p-DNA
illustrate one of the major problems in the
determination of the solution structure of
small non-natural oligonucleotides. In
contrast to larger systems such as t-RNAs
(or proteins) no NOE correlations be-
tween residues that are far apart in the se-
quence but close in space help to define
the overall structure. Therefore, small er-
rors in the determination of the local con-
formation propagate and make the accu-
rate determination of parameters such as
inclination or helicity very difficult.
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Fig. 5. a) Bundle of the ten structures lowest in energy calculated by torsion angle dynamics using
alt NMR-derived distance- and angle constraints. None of the structures violates the experimen-
tal constraints (the outermost base pairs are omitted for clarity). b) Space filling model of one of
the structures in Fig. 5a showing the low inclination and (unrealistically?) large n-n stacking

distance in the calculated structures.

Fig. 6. Molecular mode! (generated by simple energy minimization) of p-DNA demonstrating that,
in principle, a duplex structure exhibiting the strong inclination and short n—r stacking found in
p-BNA would be consistent with the experimentally determined backbone angles p and ¢.



