
2. Properties

2.1. Influence of the Substitution
Pattern on the Liquid-Crystalline
Properties

The three-dimensional structure of fer-
rocene allowed the synthesis of a great va-
riety of derivatives, such as mono- [6], di-
[1], and 1,1’,3-tri-substituted liquid-crys-
talline ferrocenes [7]. The substitution pat-
tern has a strong influence on the formation
and stability of liquid-crystalline phases.
The following mesomorphic tendency was
observed: mono-substitution < di-substitu-
tion < 1,1’,3-tri-substitution. This sequence
can be explained in terms of intermolecular
interactions which increase with the num-
ber of substituents. The disubstitution pat-
tern gives rise to three isomers for which
the liquid crystal tendency depends on the
position of the substituents (Fig. 1). The
following liquid crystal tendency was ob-
served: 1,2- < 1,1’- < 1,3-isomeric struc-
tures. This sequence can be explained in
terms of structural features as:
i) the 1,3-disubstituted ferrocenes possess

the highest molecular anisotropy among
the isomeric structures; 

ii) the substituents located at the 1,1’-posi-
tions generate a step in the structure, the
consequence of which is a reduction of
the molecular anisotropy and a loss of
co-linearity of the mesogenic sub-
stituents; and 

iii) the substituents located in the 1,2-posi-
tions generate a hairpin structure which
lacks molecular anisotropy.
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Abstract: This short account demonstrates that ferrocene is a valuable unit for the elaboration of functional
liquid-crystalline materials: 1) its three-dimensional structure allowed a clear structure-mesomorphic behav-
ior relationship in the case of mono-, di-, and poly-substituted ferrocene-containing liquid crystals to be
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1. Introduction

Thermotropic liquid crystals play a crucial
role in everyday life as they have found
widespread applications in the manufacture
of e.g. watches, calculators, mobile tele-
phones, notebook computers, thermometry,
specific oils, and pigments. Further appli-
cations are expected in the future. Achieve-
ment of this goal requires the design of liq-
uid-crystalline materials with novel proper-
ties. The development of functional liquid
crystals with tailor-made properties is a cur-
rent challenge in materials science.

Incorporation of active subunits into
liquid crystals should give rise to such new,
highly efficient materials, which will com-
bine the properties of the subunits with
those of liquid crystals (organization,
anisotropy).
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If specific properties are to be exploited
(magnetic properties, redox properties, op-
tical properties, catalytic properties), the
choice of the subunit and how it is connect-
ed to the liquid crystal are of prime impor-
tance.

Our interest in supramolecular materi-
als motivated us to develop thermotropic
liquid crystals incorporating various sub-
units. These were selected in view of their
structural characteristics and specific pro-
perties. The subunits we have incorporated
into liquid crystals are:
1) ferrocene (redox-active unit) [1],
2) ruthenocene (redox-active unit) [2],
3) (η6-arene)tricarbonylchromium com-

plexes (photo-active unit) [3],
4) bisruthenium clusters (catalytically-ac-

tive units) [4], and 
5) fullerene (redox- and photo-active unit)

[5].
From a fundamental point of view, the

incorporation of such subunits into aniso-
tropic materials is interesting in order to
establish a structure-supramolecular or-
ganization relationship and gain novel in-
formation which can be useful for the de-
velopment of other anisotropic assemblies
such as lyotropic liquid crystals, micelles,
and membranes.

The scope of this account is to highlight,
with selected examples, some relevant re-
sults we have obtained in case of ferrocene-
containing thermotropic liquid crystals. For
details and in-depth discussion, the readers
are referred to the papers and reviews men-
tioned in the text.
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2.2. Liquid-Crystalline Ferrocenes
with Planar Chirality

Unsymmetrically 1,3-disubstituted fer-
rocenes are interesting materials as they
combine structural anisotropy and planar
chirality [9]. Such compounds are suitable
candidates for the elaboration of ferroelec-
tric liquid crystals for which the properties
can be controlled as a function of the meso-
genic groups that are grafted onto the
organometallic unit. Ferrocene 4 (Fig. 2)
was obtained with an enantiomeric excess
of 98% and its spontaneous polarization
was determined as 2.8 nC⋅cm–2. This value
is consistent with the structure which car-
ries two organic fragments that are differ-
entiated only by the length of the terminal
alkyl chains and the orientation of the ex-
ternal ester functions. As most of the stud-
ies on chiral liquid crystals are developed
with compounds having point chirality, pla-
nar chirality is an alternative and elegant
way to obtain optically-active materials.

2.3. Ferrocene-Containing
Side-Chain Liquid-Crystalline
Polymers

Ferrocene-containing liquid-crystalline
main-chain polymers were shown to exhib-
it limited thermal stability making their
characterization difficult [10]. We turned
our attention to side-chain polymers, i.e.
polysiloxanes and polymethacrylates (Fig.
3). We anticipated that such polymers could
be prepared from vinyl- and methacrylate-
containing ferrocene monomers, respec-
tively, following well-established proce-
dures developed for organic monomers.
Polysiloxane 5 [11] was prepared by graft-
ing the corresponding vinyl monomer
(structure not shown) onto commercially
available polyhydrosiloxane following a
standard procedure (toluene, 70 °C, 24 h,
PtCl2(1,5-C8H12)). Polymethacrylates 6 [12]
and 7 [13] were prepared by free-radical
polymerization (THF, AIBN, 50 °C) of the
corresponding methacrylate monomers
(structures not shown). Polymers 5-7
showed good solubility in common organic
solvents (CH2Cl2, CHCl3, THF), good ther-
mal stability (no decomposition was detect-
ed up to 250 °C), and narrow molecular
weight distribution (Mw/Mn: 1.4–1.6).

2.4. Redox-Active
Liquid-Crystalline Ferrocenes

Ferrocene has found interesting appli-
cations as an electroactive building block
for elaborating switchable molecular aggre-
gates [14], redox-active receptors [15], re-
dox-active polymeric ionomers [16], and
conducting and magnetic materials [17].
With the aim of developing electroactive
liquid-crystalline materials, we synthesized
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Fig. 1. Isomeric 1,1’- (1), 1,2- (2) and 1,3 (3)-disubstituted ferrocene derivatives and their thermal
and liquid-crystalline properties. For abbreviations, see [8].
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Fig. 2. Planar chirality in unsymmetrically 1,3-disubstituted ferrocene derivatives, and an opti-
cally-active ferrocene-containing liquid crystal. For abbreviations, see [8].

8 and 9 (Fig. 4). We used peralkylated fer-
rocenes because of the ease of oxidation of
such units. Compounds 8 (→ 10) [18] and
9 (→ 11) [19] were oxidized with silver to-
sylate. Polymer 7 (→ 12) was oxidized
with iodine (Fig. 4) [20]. Oxidation had
a clear influence on the thermal and
mesomorphic properties. Indeed, while 8
and 9 were not mesomorphic, the corre-
sponding ferrocenium derivatives showed
smectic A or columnar phases, respectively,
and while polymer 7 exhibited smectic
phases, its oxidized form gave rise to the
nematic phase.

2.5. Ferrocene-Containing
Liquid-Crystalline Dendrimers

Dendrimers represent a class of materi-
als which combine unique features (well-
defined macromolecular structure, mono-
dispersity, low viscosity) with remarkable
properties (encapsulation, catalysis, chir-
optical properties) [21]. Functionalized

dendrimers, i.e. dendrimers incorporating
active or reactive functions, are considered
as new materials with potential applica-
tions, such as for the preparation of macro-
molecular libraries [22]. With the view to
combine the properties and features of den-
drimers with the properties of ferrocene, we
designed and synthesized the second-gen-
eration liquid-crystalline dendrimer 13
(Fig. 5) in which cholesterol acts as liquid-
crystalline promoter [23]. Dendrimer 13
was analyzed by cyclic voltametry, which
revealed a reversible oxidation process
with twelve electrons being transferred.
A value of 0.93 V was obtained for the
redox potential.

Conclusion

Ferrocene-containing liquid crystals
have reached a high degree of complexity
that can be used to elaborate mesomorphic



SO3H3C

CO2 CO2 OC10H21

Fe

CO2 OC10H21CO2

Fe

OC18H37CO2

Fe

SO3H3C

CO2

Fe

O2C

OC18H37O2C

Cr 154 I

Cr 134 I

8

9

10

11

Cr 132 (SA 83) I

Cr 123 (Colrect 101) I

Fe
O(CH2)6 O2CCO2

CCH2

CH3

CO2CO2

x

I3

12 Tg : ~70; N/I : ~160

Fig. 4. Non-mesomorphic ferrocenes (8 and 9) and their corresponding liquid-crystalline
ferrocenium species (10 and 11), and polyferrocenium 12 obtained from the oxidation of 7. For
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crystalline properties. For abbreviations, see [8].
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materials with specific functions and prop-
erties. Further developments in our group
will focus on the design of mixed materials,
i.e. materials containing two or more sub-
units, each subunit being sensitive to a spe-
cific external stimulus. Such compounds
will be interesting for applications in the
nanotechnologies.
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