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Abstract: The molecular informatics platform, as implemented today in the Molecular and Library Informatics (MLI)
Technology Program at Novartis Institutes for BioMedical Research (NIBR) Discovery Technologies, will be pre-
sented. The mission of the MLI program is primarily defined to contribute to the selection of screening hit and lead
compounds using in silico methods. The MLI technology program aims to provide an integrated pipeline of com-
putational methods for high-throughput in silico screening combining specific cheminformatics, bioinformatics,
docking and 3D pharmacophore applications. The four core activities of the group include: 1) Molecular diversity
management; 2) In silico screening using HTD (high-throughput docking) and 3D pharmacophore searching; 3) In-
tegrated analysis of HTS (high-throughput screening) and profiling data; and 4) Database management and soft-
ware engineering in the field of in silico screening. The contribution of these activities to the drug discovery process
will be summarized together with novel trends in the field.
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1. Introduction

Molecular informatics platforms are cur-
rently emerging as a new enabling technol-
ogy which aims to integrate key cheminfor-
matics and bioinformatics processes for
drug discovery. Molecular informatics can
be defined as the integration of the biologi-
cal and the chemical knowledge spaces and
is recognized as a foundation for the im-
provement for the quality of informatics
and high-throughput sciences driven drug
discovery [1][2]. The establishment of stan-
dardized molecular informatics platforms is
thus consequently pursued within the aca-
demic and industrial drug discovery organ-
izations and informatics-based discovery
technology companies [3-5]. The Novartis
Institutes for Biomedical Research, Mole-
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cular and Library Informatics (NIBR MLI)
platform described here, focuses on lead
discovery, which is an essential element of
the industrial drug discovery process. Mol-
ecular diversity management aims to enrich
and enhance the diversity and focus of the
NIBR screening collection by the selection
of new lead-like compounds for worldwide
compound purchasing and library design
campaigns. In the perspective of chemo-
genomics, which aims to identify systemat-
ically all ligands and modulators for all ex-
pressed gene products, the vision is to
match the chemistry and biology spaces [6].
In addition, this activity aims for a compi-
lation of target-family focused and diverse
screening sublibraries from the comprehen-
sive NIBR screening collection for classical
and fragment-based screening approaches.
High-throughput docking (HTD) and 3D
pharmacophore searches are focused on the
selection of screening compounds based on
the 3D structural hypotheses of ligand—
receptor interactions provided by structural
biology. Both virtual screening methods are
used in an independent and in an integrated
manner within the high-throughput screen-
ing (HTS) process flow [7][8]. Integrated
analysis of experimental HTS and profiling
data focuses on the analysis of the chemical
and biological information content of qual-
ity control (QC) validated HTS and profil-
ing data. By providing tools for filtering,
clustering and similarity searching of com-

prehensive bioprint-like structure—activity
tables in both the chemical and biological
dimensions, we enable the rational selec-
tion of hit and lead compounds. The data-
base management and software engineering
activity develops the necessary informatics
tools in collaboration with internal and ex-
ternal collaborations; an outline for soft-
ware developments required in the future
will be provided.

2. Molecular Diversity Management

The NIBR compound collection enrich-
ment and enhancement project integrates
corporate internal combinatorial compound
synthesis and external compound acquisi-
tion projects in order to build up a compre-
hensive screening collection for a modern
global industrial drug discovery organiza-
tion. The main purpose of the screening col-
lection is to supply the Novartis drug dis-
covery pipeline with hit-to-lead compounds
for today’s and the future’s portfolio of drug
discovery programs and to provide tool
compounds for the chemogenomics investi-
gation of novel biological pathways and cir-
cuits. As such, it integrates designed fo-
cused and diversity-based compound sets
from the synthetic and natural paradigms
able to cope with druggable and what are
currently deemed to be undruggable targets
and molecular interaction modes [9].
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Molecular informatics is a key compo-
nent for the efficient management of the
compound collection enhancement and tar-
get family focusing activities. The assess-
ment of the likelihood of a molecule to bind
to a molecular target is equally important
for both activities. Compared to protein
structure-based approaches like HTD, lig-
and-based similarity and diversity ap-
proaches can be applied routinely and in a
rapid manner to the quite large physically
existing and virtually designed compound
sets typically available for selection cam-
paigns [8][10]. Today, most of the existing
similarity searching methods are used to
identify candidate screening compounds
for a target where reference compounds are
already known — allowing competitors to
find catch-up lead molecules. Cheminfor-
matics similarity searching methods able to
identify not only ligands binding to the
same target as the reference ligand(s), but
also potential ligands of other homologous
targets for which no ligands are yet known,
are essential tools for the further explo-
ration of the previously successful target
families. Such methods have emerged only
recently and most of them are based on self-
organizing maps created on different types
of molecular descriptors [11-13].

Within NIBR, we have designed a
method called homology-based similarity
searching which is based on the Similog
molecular descriptor developed previously
at Sandoz. The method consists of the fol-
lowing three steps: 1) Select at least one tar-
get with known ligands that is homologous
to the new target; 2) combine the known lig-
ands of the selected target(s) to a reference
set; 3) search candidate ligands for the new
targets by their similarity to the reference
set [14]. Our approach has been validated
using retrospective in silico screening ex-
periments on datasets of the MDL Drug Da-
ta Report (MDDR) catalogue for several
target families, including the monoamine
G-Protein Coupled Receptors (GPCRs) as
illustrated in Fig. 1.

Although we observed in our study few-
er differences among the descriptors for
similarity searching towards the same tar-
get as the reference target, the application
of the Similog keys is more effective in the
identification of ligands binding to targets
homologous to the reference target. We at-
tribute this superiority to the fact that the
Similog keys provide a generalization of
the chemical elements and that the keys are
counted instead of merely noting their pres-
ence or absence in a binary form. The Sim-
ilog keys are thus capturing the potential
points of conserved interactions between
the ligands and the target proteins. The dif-
ference in the performance of the distance
averaging methods is attributed to the fact
that especially the centroid method is able
to enhance commonalities displayed in the
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Fig. 1. The Similog keys and retrospective in silico screening experiments comparing the retrieval per-
formance of this molecular descriptor with others for chemogenomics homology-based similarity
searching applications. The Similog keys are counts of atom triplets where each triplet is character-
ized by the 2D interatom graph distances and the types of its atoms. The atom-typing scheme clas-
sifies each atom by its function as H-bond donor (D) or acceptor (A), and by its bulkiness (B) and elec-
tropositivity (E). Other descriptors used for the validation included: the Unity-2D fingerprints, 2D topo-
logical descriptors, ISIS public key count and the E-state descriptors. These descriptors were used
in combination with two Tanimoto distance averaging methods: 1NN — nearest neighbor and cent. —
centroid. The MDDR data set was split randomly into two halves of which the first was used to ob-
tain reference sets and the second was used as test set. Within the illustrated enrichment curves, D,
GPCR ligands were used to search for ligands of the other monoamine GPCRs excluding all

dopamine GPCR hits. For further detail see [14].

pharmacophore representations of the ref-
erence compounds, crystallizing in this
manner the main repeated pharmacophore
features. The development and evaluation
of novel chemical descriptors for in silico
screening applications is a highly reward-
ing field of cheminformatics research and is
consequently pursued with high priority in
our group and collaborations [15][16].

In the process of building a focused li-
brary, it has turned out to be advisable to
carefully review the list of the reference
compounds extracted from the database to-
gether with the project chemists in order to
remove reference compounds with unwant-
ed mechanisms such as covalent binders or
frequent and promiscuous hitters, and in or-
der to add relevant reference compounds
from the corporate history [17-19]. The
similarity searching is post-processed to
avoid having too many compounds brought
by similarity to one individual reference
compound and clustering is used to ensure
the maximum possible diversity of chemo-
types in the resulting focused screening set.
In accordance to the findings of others, our
experience with focused screening sets for
kinase, proteases and GPCRs is that the re-
sults are very positive and that hit rates of
1-10% covering multiple chemical chemo-
types can be expected with library sizes of
500-2500 compounds, when the libraries
are designed towards new members with
expected conserved molecular recognition
[20][21]. Based on our experience, the
screening of focused libraries is invaluable,

both very early in the discovery process in
order to generate tool compounds for target
validation, and also in combination with
HTS, which, based on the statistical nature
of the procedure, cannot necessarily be ex-
pected to identify every active compound.
Consequently, a number of target family fo-
cused sets are maintained and implemented
for new emerging target families; the con-
cept is used to structure the NIBR screening
collection.

True molecular information systems
capturing up-to-date knowledge of ligand
and target data are essential for the compi-
lation of comprehensive reference com-
pounds sets. The classical ligand database
systems like MDDR, Ensemble, WDI
(World Drug Index), CMC (Comprehen-
sive Medicinal Chemistry), IDdb (Investi-
gational Drugs database) or PharmaPro-
jects provide structural information of
ligands together with therapeutic class
information and sometimes molecular
target information. The latter information is
however provided without any further phy-
logenetic or other relationship among the
targets, which limits their value for
chemogenomics applications. Given these
limitations, we implemented a ligand—tar-
get ontology for ligands of four major target
families of interest to us. The system
enabled us to collate systematically ligands
to comprehensive reference sets for any
specified levels of classification.

The MDDR database constitutes the un-
derlying ligand dataset and the ligand—tar-
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Fig. 2. Schematic illustration of the NIBR compound selection process. The candidate compounds
are in a first step filtered using substructure and computed physicochemical filters. Unwanted, high-
ly reactive and toxic compounds like carboxylic acid anhydrides are eliminated. The remaining com-
pounds are divided iteratively into three orthogonal categories. Penalized compounds are defined
based on additional substructure filters identifying particularly abundant chemotypes like 4-
phenyldihydropiperidines. Using both Unity 2D fingerprints and Similog keys, the remaining com-
pounds are compared to selected known reference drugs and actives of the main target families of
interest to NIBR and separated into the category of similar to known drugs and the category of drug-
like diverse compounds. The candidate compound sets are then compared in an incremental man-
ner to the existing collections and the previously made selections. This diversity selection process
starts with the candidate set of similar to known drugs and ends with the penalized compound set,
and is done using the Tripos Optisim algorithm [30]. The incremental diversity selections are done
with deceasing similarity thresholds and compound densities. For further detail see [28].

get annotation is based on the classification
references established by the EC (Enzyme
Commission), GPCRDB (G-Protein Cou-
pled Receptor Database), NuclearDB (Nu-
clear Receptor Database), and LIGCDB
(Ligand Gated Ion Channel database). By
linking MDDR activity keys to the targets
of the classification schemes, we were able
to assign and group 50°000 of the 100°000
MDDR ligands with their macromolecular
target and target classes, in addition to the
ligand functional class and therapeutic indi-
cation [22]. During this activity we recog-
nized that one main unaddressed challenge
is to provide such annotations at the protein
binding site and genome wide levels
[23][24]. It is noteworthy that chemoge-
nomics knowledge-based companies like
Aureus Pharma, Inpharmatica, GVK-
Biosys, Sertanty, and Jubilant are establish-
ing comprehensive molecular information
systems for a variety of target classes, in-
cluding GPCRs, kinases, ion channels, and
proteases. In addition, the value of annotat-
ed compound libraries was recently empha-
sized as a chemical tool kit for the investi-
gation of novel disease-relevant signaling
pathways and cellular circuits [25].
Similar selection methods can be used
to assess drug-similarity for the general en-
hancement of the screening collection by
compound purchase selections. The struc-
tural diversity is of particular importance
here, not only exact duplication needs to be
avoided, but a general diversity in terms of
chemical classes, lead and drug-likeness

needs to achieved [17][26]. The NIBR
screening library contains several types of
subsets, including annotated known bioac-
tive compounds; target-family focused li-
braries (e.g. kinases, proteases, efc.); pep-
tide mimetics (e.g. B-strand, B-turn, a-helix
structural mimetics); natural products and
derivatives thereof, and diversity-oriented
synthesis (DOS)-based libraries which tend
to mimic the structural complexity and the
skeletal and stereochemical diversity of
natural products [27].

The NIBR selection process is infor-
matics-, chemistry- and biology driven and
consists of two steps (Fig. 2) [28]. In the
first step, the candidate compounds are fil-
tered and grouped into three priority class-
es on the basis of their individual structural
and computed physicochemical properties.
Substructure and computed physicochemi-
cal filters are used both to eliminate and to
penalize compound classes. The similarity
of the remaining structures to selected ref-
erence ligands of proven druggable target
families of interest is then computed, and
the compounds similar to drugs and known
actives are prioritized for the following di-
versity analysis; homology-based similari-
ty searching is thus used here with several
reference sets of the major target families of
interest to the current target portfolio si-
multaneously. In the second step, the com-
pounds are compared to the archive com-
pounds and a diversity analysis is per-
formed. This is done separately for the
compounds prioritized as similar to known
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drugs and actives, the drug-like regular
compounds and the penalized compounds
with increasingly stringent dissimilarity
criteria. The automated analysis is followed
by manual review of the compounds to as-
sess more complex structural properties
like the chemical derivatization potential;
one major role of cheminformatics is thus
recognized in the need to reduce the num-
ber of potential candidates to a humanly
tractable number [29].

Regarding the assessment of chemical
diversity, recent advances in clustering
techniques are noteworthy [31-33]. They
now enable the co-clustering of very large
commercial compound collections and ref-
erence sets with the entire corporate collec-
tion and allow the application of constraints
for the minimal number of compounds to be
selected per cluster. The ideal library size is
currently a subject of scientific debate.
Whereas theoretical rationales are emerg-
ing [34-36], pragmatic considerations are
prevailing and focus on the diversity of
chemotypes rather than on larger and larger
numbers of individual compounds per scaf-
fold; the latter should, however, be such to
enable the detection of structure—activity
relationship from the screening data. As an
increasing number of commercially avail-
able screening compounds are prepared by
combinatorial or parallel synthesis, the
evaluation and selection based on the scaf-
folds is a reasonable alternative. This is es-
pecially valid if the compounds have not yet
been prepared and one is given the oppor-
tunity to prioritize the synthesis proposals.
Scaffold novelty within the corporate col-
lection and compared to the patented chem-
istry space can be ensured by substructure
searching. As the number of attractive scaf-
folds is limited, the selection of the most
promising ones can be done manually, al-
though computational methods for the eval-
uation of scaffold diversity are emerging
[37-38]. Reference repertoires of privi-
leged structures are a pragmatic guide in
this process [39].

The implementation of efficient and up-
dated 2D- and 3D-structure databases is
one major challenge in molecular diversity
management. Although dedicated chem-
informatics companies are providing up-
dated unified compilations of the major
vendor catalogues [40], corporate internal
databases are needed, both for compounds
and scaffold-based projects because many
specialized vendors only share information
on a confidential basis. Databases of around
5°000°000 compounds and around 4’000
scaffold-based chemistries available inside
NIBR as well as from selected vendor cata-
logues were thus created with the main pur-
poses to facilitate the selection and pur-
chase logistics of new compounds and to
assist chemists to follow-up screening hits.
Each compound in the 2D database is rep-
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resented with its unique structure and sam-
ple ID, which can be a vendor catalogue
number or a Novartis internal number. For
each entry, the original structure represen-
tation is saved and the structural represen-
tation is standardized after stripping out all
solvent and salt fragments using data
pipelining tools [41]. The information
about solvent or salt fragments is stored to-
gether with the sample ID in a coded form,
and the standardized structure is entered
with the link to the corresponding sample.
The representation of samples as standard-
ized structures allows quick identification
of structural duplicates between purchase
candidates. A number of structural proper-
ties and fingerprints are calculated and
stored to monitor the properties of the
screening collection and to enable similari-
ty and diversity analysis for compound
selection.

As the current structure database tech-
nology is reaching its performance limits
for index updates and database searching,
new developments are required especially if
virtual compound sets become available
which are potentially several order of mag-
nitudes larger than the physically available
sets. Such new developments should ideal-
ly include search capabilities based on mul-
tiple complementary molecular descriptors
[10].

3. In silico Screening Using HTD
and 3D Pharmacophore Searching

Given the availability of Linux clusters
and Grid computing platforms, HTD and
3D pharmacophore in silico screening tech-
niques have matured during the last years to
become reliable, inexpensive and fast meth-
ods for lead finding which complement
HTS [42-45]. HTD is applicable when a
relevant 3D model of the target structure is
available. The 3D query for pharmacophore
searching can be based on both the 3D tar-
get and ligand information. Both methods
try to optimize and rank the complementar-
ity between the candidate compound and
the 3D structure of the binding site or the
pharmacophore query. Only those com-
pounds with the highest complementarity
are then actually biologically tested. The fi-
nal selection of compounds often integrates
consensus scoring techniques [46][47] and
careful visual inspection by a computation-
al and medicinal chemist. A variety of
docking and pharmacophore searching pro-
grams are commercially available, the most
prominent being Glide [48][49], Gold [50],
FlexX [51], ICM [52], Catalyst [53], and
Unity [54].

Within the MLI program, HTD and
pharmacophore searching are applied for
different scenarios and over the last two
years, resulted in a significant number of

hit-to-lead compounds. The methods are
used to screen compound catalogues from
medicinal chemistry vendors, enriching the
compound acquisition campaign by com-
pounds with an increased probability to
bind to specific targets of interest. Both for
classical screening and fragment-based
screening methods, specific target screen-
ing boxes are generated and subsequently
screened, providing additional hit series
compared to HTS. In many drug discovery
projects, a 3D structure becomes available
only after the HTS is completed. HTD is of
value to probe the newly available chem-
istry space when a new follow-up lead se-
ries is required and a large-scale HTS cam-
paign is not a priority. For instance for an
important kinase target, using HTD to
screen compound libraries recently added
to our archive, we were able to discover 16
new validated inhibitors with different
chemotypes from only around 200 com-
pounds selected for testing. HTD and phar-
macophore-based in silico screening are al-
so conducted in a more ‘classical’ way in
exploratory projects or when a HTS is not
available, for instance for complex cell-
based assays for virus fusion. We identified
in a early phase of the CK2 program a nov-
el ATP binding site inhibitor using a ho-
mology model of the target [55]. The com-
plementarity of HTS and HTD is of partic-
ular importance [8][56], especially in the
factory HTS set-up of NIBR Discovery
Technologies. HTD is an essential element
of the HTS data analysis process in order to
rescue promising potential false negatives
that are below the traditional HTS thresh-
old, but which show steric and electrostatic
complementary to the postulated target
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binding site. Applying this approach in a re-
cent HTS campaign, around 100 validated
actives and 120 weak actives out of 500 res-
cued compounds were found in addition to
those validated hits from the initial selec-
tion made by screening (Fig. 3). Another
use of HTD is the in silico screening of di-
verse and targeted virtual combinatorial li-
braries. In lead finding, we use HTD for
computational positional scanning experi-
ments of given known actives from internal
or competitor discovery projects where
there is a need to improve the affinity and/or
ADME profile. For an important protease
target, we have for instance built a virtual
library of 10’000 compounds by grafting on
one substituent position commercial
reagents to a small tightly binding scaffold.
Of the final 20 selected compounds for syn-
thesis, four turned out to be active, with the
most active resulting in a lead compound.
Such results clearly demonstrate that HTD
has become a reliable lead discovery tech-
nology.

Given the progress in the integration of
structural genomics [5][57], including ho-
mology modeling [58][59] and industrial
protein structure groups solving quickly the
3D structures of relevant drug discovery
targets, the impact of structure-based in sili-
co screening can only be expected to grow.
Recent developments within the chemoge-
nomics field include the application of
HTD for the evaluation of combinatorial li-
braries against multiple targets and the
docking of single compounds against the
comprehensive protein structure database
[60-64].

The development of better HTD meth-
ods is an active field of research in compu-

« Compounds found in HTS

* Binding mode is valuable to

P> ( validated Hitlist )

e Compounds found by HTD
beyond the HTS threshold

and HTD
chemist
Classical
threshold }
Lower J
threshold

Fig. 3. Process integration of HTS and HTD high-throughput discovery technologies. HTD is used to
recover potential false positives which have in the 3D in silico model complementarity to the pre-
sumed target binding site. The entire screening collection or only compounds from the primary HTS
hit list in between the classical HTS thresholds set by the screener and an extended threshold value
are investigated in HTD. The additionally selected 500-1000 compounds are added to the validation
screening set. Timelines for the generation of the in silico input are critical for the success of this
process. Additional added value for the drug discovery chemist is provided by the generation of the

3D poses of the validated hits.
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tational chemistry [65]. Indeed, the current-
ly available methods are based on a number
of approximations regarding the flexibility
and the computation of binding energies. It
is known that proteins, although depicted as
static conformationally averaged represen-
tations from crystallographic structure de-
terminations, are actually quite flexible and
dynamic molecules. Proteins can undergo
small- to large-scale conformational reor-
ganization upon interaction with the ligands
as is evidenced from NMR and crystallo-
graphic investigations where proteins were
crystallized under different conditions or in
presence of different ligands [66]. Although
docking methods like ICM [52] allow the
inclusion of full protein flexibility, at least
in the low-throughput mode which is up to
a factor 100 times slower, the requirements
for high-throughput are such that today the
protein is kept fully rigid or that only limit-
ed flexibility is allowed for key side-chains
[67][68]. Pragmatically, this limitation can
partially be circumvented by using multiple
protein conformations in parallel generated
by NMR structure determinations or MD
simulations.

Highly flexible compounds are exclud-
ed from large-scale HTD runs because the
number of conformations to be generated
and checked is computationally too impor-
tant in a high-throughput mode. Typically,
only compounds with twelve or fewer
freely rotatable bonds are considered in
HTD experiments. To extend the chemical
repertoire to natural products is another
challenge for HTD, which is important giv-
en the particular relevance of natural prod-
ucts for medicine and their limited avail-
ability in the screening collection [62][69].
Although natural products are chemicals
like synthetic compounds, they tend to be
larger and more complex in structure; the
number of rotatable bonds tends to be high-
er and they often contain complex macro-
cycles. Most docking programs cannot han-
dle the flexibility of such ring systems. In
addition, for many natural products the ab-
solute configuration of a number of chiral
centers are not known, meaning that the 3D
structure cannot be generated with certain-
ty and that a combinatorial enumeration has
to be used.

While the docking algorithms have sig-
nificantly evolved over the years [65], none
of the available scoring functions is suffi-
ciently accurate for the reliable computa-
tion of binding free energies [46]. The most
rigorous computational techniques for
binding affinity calculation are the free en-
ergy perturbation and thermodynamic inte-
gration methods. These methods, which
employ molecular dynamics (MD) or
Monte Carlo (MC) simulations, are well
suited to compute the differences of binding
energies of members of a series of con-
generic ligands. The drawbacks are that

they are computationally very intensive and
not practical for ligands that are structural-
ly very different. An approximation to these
methods is based on linear response theory
(LR) and requires only simulations (MD or
MC) at the two endpoints of the binding
process, which significantly reduces the
computational cost [70]. In this approach,
the free energy of binding is given by a
weighted sum of the electrostatic and van
der Waals interaction energies between the
ligand and its environment. A major advan-
tage of the LR approach is that it can han-
dle ligands that are structurally very di-
verse. Nevertheless, it remains to be seen
whether the LR method can yield accurate
results in this case. One drawback is that the
binding energies have to be scaled by one or
more parameters obtained by fitting the
computed binding energies to the corre-
sponding experimentally determined bind-
ing affinities. Previous work has shown that
these fitting parameters depend on the re-
ceptor and probably also on the force-field
used in the simulation [71].

Another approach that is comparable to
LR in terms of computational load is the so-
called MMPB/SA (Molecular Mechanics
Poisson Boltzmann/Accessible Surface)
approach [72]. This method does not re-
quire any fitting parameter. Conversely, the
solvent is usually modeled as a continuum
with a high dielectric value and it remains
to be seen whether this approximation is ac-
curate for large biomolecules. As for the LR
method, it is unclear to what extent the
MMPB/SA can handle ligands that are
structurally very different. Very recently, a
novel method that combines ab initio cal-
culations with suitable consistency re-
straints has been introduced to compute the
ligand partial charges [71]. Used in con-
junction with MD simulation in explicit
solvent, it has been successfully applied to
elucidate the binding mode of progesterone
to its receptor [73]. Its value for scoring of
HTD hit lists, however, remains to be
demonstrated. The methods based on MD
or MC simulation are significantly slower
than the current scoring functions and can
therefore only be applied to the refinement
of primary HTD hit lists.

Integrated HTD project management,
reporting and database systems which con-
tain both the protein binding site datasets
[5] and the ligand datasets will become of
interest if the importance of HTD as a dis-
covery technology continues to increase.

4. Analysis of the Chemical and Bio-
logical Information Content of HTS
and Profiling Data

The global NIBR HTS screening opera-
tion generates massive amounts of high-
quality screening and profiling data. The
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primary mission is to enable the selection of
high-quality lead structures for the NIBR
disease areas by appropriate data analysis.
High-quality analysis and visualization of
HTS and profiling data are therefore key to
successful completion of the mission of NI-
BR Discovery Technologies and should re-
sult in an overall improvement of the qual-
ity and speed of discovery transitions and
an increase in the research productivity
[74][75]. Furthermore, the exploration of
the potential of in-depth analysis of the
chemical and biological information con-
tent of HTS and profiling data constitutes
one of the foundations of information-
intensive molecular pharmacology and
chemogenomics [76][77]. To cope with
these expectations, NIBR collaborates with
the bioinformatics company GeneData [78]
in order to explore and implement a com-
prehensive software for data analysis inte-
grating the following key aspects: 1) HTS
and profiling data QC addressing process
quality issues; 2) data normalization and
standardization, including annotation; and
3) analysis of biological and chemical in-
formation content of profiling and primary
HTS data. Based on field analysis and liter-
ature reports [79], HTS and profiling data
analysis is within the pharmaceutical indus-
try a neglected activity. Interestingly, some
biotech companies like Cerep have built
their business model not only based on in-
tense screening and profiling, but also
based on high-level data analysis [80].
Whereas the QC aspect is more tightly re-
lated to the screening and automation
process itself [81], the data standardization
and annotation, and especially the analysis
of the chemical and biological information
content are close to the data mining and
compound selection steps where disease
area chemists and biologists are involved.
Appropriate assay annotation is invaluable
for analyses across multiple assays in order,
for instance, to detect screening technology
or target family specific artifacts like fre-
quent hitters [18][19]. Alternatively, such
annotations enable previously known active
sets to be subtracted from newly generated
HTS hit lists, providing in this way a strat-
egy to enhance the potential for discovery
of truly novel chemotypes from HTS cam-
paigns. Additional value of the annotations
is recognized as being a basis for rational
navigation systems for the fast growing
number of data sets generated within the
HTS and profiling factories and to allow
category-dependent monitoring of hit rates.
Within this perspective, a limited number of
annotation categories were defined by the
screeners and data analysis experts and in-
clude for example: 1) Organizational data
(customer disease area, screening depart-
ment, etc.); 2) target classes (e.g. molecular
target, pathways, efc.) including for protein
targets a gross classification of the target
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Fig. 4. Advanced data mining of large scale structure-activity bioprint-like and correlation matrices.
The GeneData Sarileo software which NIBR co-developed allows the chemical and biological clus-
tering and similarity analysis of large scale structure-activity matrices as shown in the left panel for
primary and validation datasets of multiple HTS assays. The primary and validation data sets for each
target are more similar than the cross-target similarities. The correlation analysis of validated IC50
profiling data of a set of NIBR reference compounds on a panel of GPCR targets is shown in the right
panel. The molecular recognition between a number of these receptors is clearly correlated to what
is important information for the design of selective compounds and for the design of safety pharma-
cology studies. The screenshots were made using the GeneData Sarileo software. For further details

see [78].

families (e.g. GPCR, Ion channel, efc.); 3)
assay class (e.g. physicochemical, bio-
chemical, etc.) and assay types (e.g. ago-
nist, antagonist, etc.); 4) readout type (e.g.
fluorescence, radioactivity, etc.); and 5) key
experimental parameters (e.g. concentra-
tions, incubation times, efc.). The com-
pilation and analysis of large-scale struc-
ture—activity matrices is the goal of profil-
ing activities and is also desirable for
primary HTS data. Analyses pioneered by
the Weinstein group at the NCI [76] and by
Cerep [80—83] can here be considered as
model systems (Fig. 4).

Essential chemical and biological
analyses allowing compound selections and
advanced data mining include for instance:
1) Selection of a data subset for analysis ac-
cessible via a standardized data navigation
system; 2) interactive visualization of struc-
ture—activity arrays together with chemical
structures; 3) compound filtering based on
property ranges and occurrence of specified
substructures; 4) chemical clustering of ar-
rays, with the possibility to define sub-
groups of compounds for further analysis.
The functionality is especially important
within the analysis of primary HTS hit lists
for the selection of compounds for valida-
tion screening and the reporting of final
HTS hit lists; 5) chemical similarity search-
ing starting from individual compounds or
from compound clusters; 6) biological ac-
tivity or property-based clustering of arrays
for the identification of subgroups of com-
pounds with similar mode-of-action or
property profiles, as well as for the identifi-
cation of existing profile classes per se.
This functionality is especially important

within the analysis of primary HTS hit lists
for the selection of compounds for valida-
tion screening using multiple read-outs or
based on additional screening data; 7) bio-
logical activity or property-based similarity
searching for the identification of com-
pounds with a specified profile; and 8) cor-
relation analysis between assays. The cor-
relation between assays is directly related
to methods for the extraction of both fre-
quent hitters and privileged scaffolds, the
former being uninteresting compounds
which should be eliminated and the latter
being of interest for the enrichment of the
corporate collection.

One of the main open questions in HTS
data analysis focuses on the value of pri-
mary HTS data for the generation of Quan-
titative  Structure—Activity = Relationship
(QSAR) models including the prediction of
selectivity profiles and activity patterns
across multiple assays/targets [85][86]. Be-
cause pharmacological efficacy and poten-
cy are not necessarily correlated, it might
indeed be possible that such analyses are
only meaningful for accurate binding data
obtained from dose-response curve experi-
ments and not for functional data obtained
from single dose screening [87]. The analy-
sis of the relationship between chemical
clusters and biological profiles is of partic-
ular interest in the field of chemogenomics
[88]. Interesting scientific questions ad-
dress the relevance of chemical classes
[82][83]: To what extend do similar com-
pounds or compounds of a given chemical
class show a conserved biological profile?
Or, vice-versa: What is the diversity of com-
pounds with a specific biological profile?
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Despite these emerging advanced data
analyses, today the basic HT'S data analysis
process is in most cases single-project fo-
cused with the objective to assist the selec-
tion of compounds from the primary HTS hit
list for dose dependent validation screening.
Depending on the size of the primary HTS
hit list, this triage is basically done according
to two different scenarios. 1) Reducing the
size if the primary hit list is, as in many func-
tional signaling and reporter-gene assays,
too large compared to the naturally limited
resources for validation screening, and 2) in-
creasing the size of the primary hit list if it
does not reach this limit, as it is the case for
many cell-free biochemical assays. In both
scenarios, the objective is to select and to en-
rich from a given primary HTS data set those
compounds which have the best potential to
become hit-to-lead compounds and to ex-
plore at maximum the chemical diversity
represented in a primary hit list and other
sources of information relevant for this spe-
cific screening campaign. As compound se-
lection and filtering is a subject of intense
scientific debate, the computational analysis
process uses in a first step data pipelining
tools to annotate the different decision crite-
ria to the compounds (Fig. 5).

The annotation criteria are of diverse
nature. Because of the legacy of the screen-
ing collection, compounds violating the
standard substructure filters used in the de-
sign of the newer screening sets need to be
applied. In addition, project specific sub-
structure, scaffold and physicochemical fil-
ters are applied to the primary hit list in or-
der to maximize the chemical attractiveness
of the resulting hit list. Based on the
chemist-dependent information of chemi-
cal attractiveness, Bayesian classifiers or
other machine learning techniques can be
applied to translate this information into
predictive computational models [82][83].
In a similar manner, empirical information
about the promiscuity or cell toxicity of the
hitters can be integrated using reference
lists compiled over the years by the individ-
ual screening labs for assays of the same
format or same target family. Input from
maximum common substructure clustering
methods is used to track quickly chemical
scaffolds that are over representative in a hit
list [89][90]. Another use of clustering is to
reduce large hit lists by cherry picking a
representative set from each cluster pre-
serving the most active compounds. The
summary of the different annotation criteria
can then be used to qualify the chemical and
biological hit attractiveness using simple
additive point-based scoring schemes. The
annotated and scored primary hit lists are
then discussed within the project team for a
final decision. Hit list enrichment can be
performed using several techniques like the
already mentioned homology-based simi-
larity searching using known reference
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Fig. 5. Usage of Pipeline Pilot data processing software for primary hit list triage. In the shown com-
putational protocol, the hit list is first annotated based on so-called A and B exclusion substructure
filters. Lipinski-based properties and chemist specific substructure annotations are then added. In
the next steps, the Tanimoto similarity compared to a number of reference compound lists is anno-
tated. All annotations are then summarized into an overall score and the fully annotated primary hit
list is then discussed by the project team in order to make the selection of compounds to be vali-
dated. For further detail on the Pipeline Pilot software see reference [41].

compounds and HTD or pharmacophore
searching when a 3D model of the target
binding site is available. More recently, pre-
dictive QSAR modeling techniques are
used for the prediction of false positives and
negatives from primary HTS data [85][86].
Follow-up additions using similarity and
pharmacophore-based searching using the
validated screening results are then per-
formed in most cases within the disease
area. The importance to trace the triage an-
notations and decisions as derived data is
recognized as being of capital interest for
the transparency of the HTS hit identifica-
tion process. A major challenge for HTS da-
ta analysis is to keep up with the rapid evo-
lution of HTS techniques and read-outs
which, in many cases, require specific nov-
el analysis approaches [91-93].

5. Conclusion

The selection of small molecular weight
compounds for screening and hit-to-lead
activities is of central importance for drug
discovery. As presented in this article, the
role of molecular informatics within the NI-
BR Discovery Technologies is to provide an
in silico platform for the integrated genera-
tion and analysis of data and knowledge rel-
evant for high-throughput science driven
lead finding. To further improve the impact
of this industrial approach, the experimen-
tally and in silico generated data and knowl-

edge will need to be further integrated to-
gether with advanced data mining technolo-
gies accessible to the drug discovery experts
in the disease areas. Consequently, in order
to maximize the added value for the overall
discovery and optimization process, our cur-
rent efforts focus on the consistent chemical
and biological annotation of the data and de-
cisions, aiming at the development of drug
discovery ontologies at the genome level.
Such advanced knowledge-based [2][94]
systems are expected to complement the ex-
pertise of the drug discovery chemist and
biologist and should especially allow us to
learn more efficiently from the past experi-
ences in order to explore more quickly the
biology of novel targets and pathways, and to
contribute by the development of mecha-
nism and knowledge-based medicines to im-
prove the overall productivity of the indus-
trial pharmaceutical research.
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