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Abstract: Photoinduced electron transfer (ET) reactions have been investigated in glassy media at 77 K. Dis-
tance decay parameters for electron tunneling through water, 2-methyltetrahydrofuran, and toluene have been 
determined through measurements of donor luminescence quenching by randomly dispersed electron acceptors. 
Remarkably different long-range ET efficiencies in the three solvents are in accord with the predictions of a super-
exchange model of distant electronic couplings. We conclude that tunneling energy effects play an important role 
in long-range ET reactions, and further that the coupling drops off very rapidly across van der Waals gaps between 
molecules in glasses.
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In photosynthesis, controlled electron 
transfer (ET) produces distant charge sepa-
ration that facilitates the storage of solar en-
ergy in chemical form [1]. Over the past few 
decades, investigations of photoinduced ET 
reactions in a wide range of donor–acceptor 
systems have shed light on the factors that 
control the rates of these types of charge 
separation processes, notably including ex-
perimental evidence for the inverted driv-
ing force effect in synthetic donor–acceptor 
molecules [2][3], the design and construc-
tion of mimics of the photosynthetic reac-
tion center [4][5], as well as the demonstra-
tion that electron tunneling through proteins 
can occur over distances greater than 15 Å 
[6]. It also has been shown that charge can 
travel over distances of ∼40 Å in artificial 
molecular wires [7].
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In very recent work, we have investigat-
ed electron tunneling through molecules in 
aqueous and organic glass matrices [8][9]. 
The efficiency of solvent as a medium for 
ET is a relatively unexplored aspect of 
long-range electron tunneling studies. We 
would like to know to what extent ‘intra-
molecular’ ET is mediated by the solvent 
that surrounds a given donor–bridge–ac-
ceptor system. Early investigations of ET 
through glassy media [10–12] as well as 
more recent studies of C-clamp donor–ac-
ceptor systems [13] have established that 
covalent bonds are not required for long-
range electron tunneling, and very recently 
we have studied the distance dependence of 
photoinduced electron tunneling through 
water/sulfuric acid, 2-methyltetrahydrofu-
ran (MTHF), and toluene glasses at 77 K by 
monitoring donor luminescence quenching 
by randomly dispersed electron acceptors 
(Fig. 1a) [8][9]. Since electron donors and 
acceptors are randomly distributed in the 
glass matrix (Fig. 1b), there is a statistical 
distribution of ET rates, leading to highly 
nonexponential donor luminescence decays 
from which information on the distance 
dependence of tunneling through the vari-
ous glassy media can be extracted. The key 
requirement for a successful experiment is 
that the ET reactions must be driving force 
optimized if they are to be observable in a 
rigid matrix at 77 K. After much trial and 
error, we found that Ru(terpyridine)2

2+/
Fe(OH2)6

3+ and [Ir(μ-pyrazolyl)(1,5-cy-
clooctadiene)]2/2,6-dichloro-1,4-benzo-
quinone are suitable donor–acceptor pairs 
for aqueous and MTHF/toluene glasses, 

respectively [8][9]. Analysis of  the do-
nor luminescence decay data (Fig. 2) for 
various electron acceptor concentrations 
[11][14][15] yielded ET distance decay pa-
rameters (β) for the various glasses (Table). 
In glassy toluene, β is 1.23 Å–1; in MTHF 
and aqueous glasses, the decay constant is 
∼1.6 Å–1. Our experiments show that at a 
donor–acceptor distance of 20 Å, electron 
tunneling through toluene proceeds ∼1000 
times faster than through MTHF or water. 
What causes this large difference in long-
range ET rates?

An acceptable answer to the above 
question can be obtained from a super-
exchange model of the electronic coupling 
between a donor and acceptor separated by 
a bridge of repeating units [16]. The model 
predicts a simple relationship between the 
distance decay parameter β, the length α of 
the bridge unit, the electronic coupling be-
tween individual bridge elements hbb, and 
the tunneling energy gap Δε:

Δε is the difference between the energy of 
the donor–acceptor states at the transition 
state configuration and the energy of the 
bridge states. In the aqueous glass, hydro-
gen bonds will provide relatively strong 
coupling (large hbb) between individual 
solvent (bridge) molecules. Nevertheless, 
the MTHF glass mediates ET equally well, 
likely due to the combined effect of larger 
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bridge unit size and smaller tunneling ener-
gy gap. The substantially more efficient ET 
through toluene is attributed to the presence 
of π-bonding and antibonding orbitals that 
lead to a smaller tunneling energy gap than 
in MTHF or water. In addition, the excess 
electron or hole will be delocalized over the 
set of π molecular orbitals of the toluene 
bridge molecules, but in 2-methyltetrahy-
drofuran and water it will be localized on 
two or three atoms.

Our work has shown that water is a poor 
medium for ET: its distance decay param-
eter of 1.59 Å–1 compares to a β-value of 
∼1.1 Å–1 for tunneling through a polypep-
tide backbone [16]. Thus, at a donor–accep-

tor distance of 20 Å, ET through water is 
prohibitively slow, whereas tunneling over 
such long distances in proteins occurs with 
rates on the order of 104 s–1 [18]. In addi-
tion, the high dielectric constant of water 
imposes large reorganization barriers to 
electron transfer [19]; therefore, exclusion 
of water from active sites often triggers 
electron transfers through proteins. 

The finding that tunneling through 
MTHF (1.62 Å–1) is much less efficient 
than through alkane bridges (∼1.0 Å–1) 
[20][21] confirms that electronic coupling 
across van der Waals gaps is much weaker 
than through covalent bonds: in a recent re-
port, we estimated that ET through a 2-Å 
van der Waals gap is ∼50 times slower than 
tunneling the same distance through a cova-
lently bonded bridge [9]. This finding has 
important implications for biological elec-
tron transfer, as the medium between redox 
centers in proteins is a heterogeneous array 
of covalent, hydrogen bonded, and van der 
Waals contacts between atoms of the poly-
peptide matrix. The protein secondary and 
tertiary structure ensures that there exists 
a tunneling pathway for electrons that in-
volves many covalent and hydrogen bonds 
such that electron tunneling can occur ef-
ficiently over long distances [6].

Comparison of the distance decay pa-
rameters for toluene (1.23 Å–1) and oligo-
phenylene bridges (0.4–0.8 Å–1) [22][23] 
leads to the same conclusion: there is a 
significant coupling penalty associated 
with van der Waals gaps. The finding that 
toluene is a significantly better ET media-
tor than MTHF is especially noteworthy, as 
this is direct experimental confirmation of 
the superexchange coupling model devel-
oped more than forty years ago [16]. Our 
work suggests that the tunneling energy 
gap Δε plays a decisive role in determining 
long-range electronic couplings; aromatic 
bridges have lower lying energy levels than 
saturated organic bridges, and this leads 
to enhanced electronic coupling between 
donor and acceptor. The dependence of 
donor–acceptor coupling on the tunnel-
ing energy gap demonstrated in our work 
could potentially be exploited in synthetic 
systems if Δε could be minimized for pho-
toinduced charge separation and at the same 
time maximized to disfavor thermal charge 
recombination. A design of this type would 
represent a key step in the development of 
efficient artificial photochemical energy 
storage systems.
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Fig. 1. (a) In the photoinduced ET experiments, donors (Ru(terpyridine)2
2+ in H2O/H2SO4 glasses 

[8][9]; [Ir(μ-pyrazolyl)(1,5-cyclooctadiene)]2 in MTHF and toluene glasses [9] are selectively excited 
(8 ns laser pulse) to long lived (>μs) luminescent excited states. Radiative and nonradiative excited-
state depopulation is in competition with ET from these powerful reductants to electron acceptors 
(Fe(OH2)6

3+ in aqueous; 2,6-dichloro-1,4-benzoquinone in organic glasses). By monitoring the donor 
luminescence decays (kem), it is possible to obtain excited-state ET rates (k*ET). (b) Donors (∼ 30 μM) 
and acceptors (0.05–0.5 M) are randomly dispersed in glassy solvents. The long donor excited-state 
lifetime allows photoinduced ET to be examined over distances up to 22 Å [9].

Fig. 2. A wide distribution of donor-acceptor distances produces highly nonexponential luminescence 
decay curves. Left:  experimental [Ir(μ-pyrazolyl)(1,5-cyclooctadiene)]2 luminescence decay kinetics 
in a MTHF glass at 77 K. The top curve is the single exponential decay obtained in the absence of 
electron acceptors. With increasing 2,6-dichloro-1,4-benzoquinone concentration (0.05, 0.10, 0.15, 
0.20 M), the decays become increasingly nonexponential. The relative intensities of the decay curves 
were determined by separate time-integrated luminescence quantum yield measurements. Right: 
simulated decays using a two-parameter model [14][15]. From fits to the experimental decay data, 
we obtained a distance decay parameter β = 1.62 Å-1 for the MTHF glass [9].

Table. Distance decay parameters for electron 
tunneling through various media

β [Å-1]

H2O/H2SO4 glass 1.59

MTHF glass 1.62

toluene glass 1.23

covalent alkane bridges ~1.0a

protein β-strand 1.1b

oligo-phenylene bridges 0.4-0.8c

afrom ref. [20]; bfrom ref. [17]; cfrom refs. 
[22][23]



LAUREATES: AWARDS AND HONORS SCS FALL MEETING 2004 96
CHIMIA 2005, 59, No. 3

[1]  G. Feher, J.P. Allen, M.Y. Okamura, D.C. 
Rees, Nature 1989, 339, 111.

[2]  G.L. Closs, J.R. Miller, Science 1988, 244, 
440.

[3]  L.S. Fox, M. Kozik, J.R. Winkler, H.B. 
Gray, Science 1990, 247, 1069.

[4]  G. Steinberg-Yfrach, J.-L. Rigaud, E.N. 
Durantini, A.L. Moore, D. Gust, T.A. 
Moore, Nature 1998, 392, 479.

[5]  A.D. Joran, B.A. Leland, P.M. Felker, 
A.H. Zewail, J.J. Hopfield, P.B. Dervan, 
Nature 1987, 327, 508.

[6]  H.B. Gray, J.R. Winkler, Q. Rev. Biophys. 
2003, 36, 341.

[7]  W.B. Davis, W.A. Svec, M.A. Ratner, 
M.R. Wasielewski, Nature 1998, 396, 60.

[8]  A. Ponce, H.B. Gray, J.R. Winkler, J. Am. 
Chem. Soc. 2000, 122, 8187.

[9]  O.S. Wenger, B.S. Leigh, R. Villahermo-
sa, H.B. Gray, J.R. Winkler, Science, 2005, 
307, 99–102.

[10]  J.R. Miller, Science 1975, 189, 221.
[11]  J.R. Miller, J.V. Beitz, R.K. Huddleston, J. 

Am. Chem. Soc. 1984, 106, 5057.

[12]  T. Guarr, M. McGuire, S. Strauch, G. Mc-
Lendon, J. Am. Chem. Soc. 1983, 105, 
616.

[13]  K. Kumar, Z. Lin, D.H. Waldeck, M.B. 
Zimmt, J. Am. Chem. Soc. 1996, 118, 
243.

[14]  M. Inokuti, F. Hirayama, J. Chem. Phys. 
1965, 43, 1978.

[15]  A. Blumen, J. Chem. Phys. 1980, 72, 
2632.

[16]  H.M. McConnell, J. Chem. Phys. 1961, 
35, 508.

[17]  R. Langen, I.J. Chang, J.P. Germanas, J.H. 
Richards, J.R. Winkler, H.B. Gray, Science 
1995, 268, 1733.

[18]  J.R. Winkler, B.G. Malmström, H.B. Gray, 
Biophys. Chem. 1995, 54, 199.

[19]  R.A. Marcus, N. Sutin, Biochim. Biophys. 
Acta 1985, 811, 265.

[20]  J.F. Smalley, H.O. Finklea, C.E.D. Chid-
sey, M.R. Linford, S.E. Creager, J.P. Fer-
raris, K. Chalfant, T. Zawodzinsk, S.W. 
Feldberg, M.D. Newton, J. Am. Chem. 
Soc. 2003, 125, 2004.

[21]  H. Oevering, M.N. Paddon-Row, M. 
Heppener, A.M. Oliver, E. Cotsaris, J.W. 
Verhoeven, N.S. Hush, J. Am. Chem. Soc. 
1987, 109, 3258.

[22]  A. Helms, D. Heiler, G. McLendon, J. Am. 
Chem. Soc. 1992, 114, 6227.

[23]  R. Villahermosa, Ph. D. thesis, California 
Institute of Technology 2002.


