Alkali Metal Phenylphosphandiides, $[M_2P_nPh_n]$ (M = Li, Na)

Daniel Stein[§], Jens Geier, Hartmut Schönberg, and Hansjörg Grützmacher* [§]SCS Poster Prize Winner

Abstract: The reaction of phenyldichlorophosphane, PhPCl₂, a commercially important precursor for organophosphorus compounds, with lithium and sodium as reducing metals was re-investigated with the aim to well-characterize the resulting oligophosphandiides, $[M_2(P_nPh_n)(solv)_x]$ (M = Li, Na). Experimental conditions for the optimal formation of these compounds were found for both series with M = Li and M = Na and several of these were crystallized and characterized by X-ray diffraction studies. As a result, we find that sodium strongly prefers ion triple structures $[M_2(P_nPh_n)(solv)_x]$ over solvent-separated ion pairs, $[M(solv)_m]^+[MP_nPh_n(solv)_n]^-$, which have a higher tendency to form with M = Li. Also, while $[Na_2(P_4Ph_4)(solv)_x]$ retains its structure in thf solution, $[Li_2(P_4Ph_4)(solv)_x]$ partially dissociates into the radical anion $(Ph_2P_2)^-$ which is detected by EPR spectroscopy. The knowledge about the structures and the behavior of the alkali metal diphosphandiides allows us to propose a reaction mechanism for their formation.

Keywords: Alkali metals · Ion triples · Phosphanes · Phosphorus · Radicals

1. Introduction

Phenyldichlorophosphane, PhPCl₂(IUPAC: phenylphosphonous acid dichloride) is produced on large scale from PCl₂ and benzene [1] and is a versatile starting material in organophosphorus chemistry. Since the middle of the last century, the reaction of PhPCl₂ with alkali metals M has been intensively studied [2]. In collaboration with our industrial partner, Ciba Specialty Chemicals Inc, we became particularly interested in the question of whether a compound of the formula PhPM₂ may be prepared from the reaction of $PhPCl_2$ with metals as M = Li and Na. The use of sodium is of particular interest because of its availability and low price. Evidently, bismetallated phosphandiides, RPM₂, may serve as versatile reagents for the synthesis of a wide variety of functionalized phosphanes [3].

PhPM₂ (M = Li, Na, K) compounds have been postulated as products in the reductive bond cleavage (RBC) of cyclic oligo(phenylphosphanes), (PhP)_n (n = 4, 5, 6) [4] (Eqn. (1), Scheme 1) or by deprotonation of phenylphosphane, PhPH₂, by organolithium reagents (Eqn. (2), Scheme 1) [5].

These compounds are, however, because of their very low solubility poorly characterized and neither conclusive spectroscopic data nor their structures have been reported. Only recently, a detailed characterization of some phosphandiides became possible. For example, Driess et al. were able to isolate and structurally characterize the ionic clusters $[Li_{16}(P-SiR_3)_{10}]$ and $[Li_6O\subset Li_{20}(P-SiR_3)_{10}]$ $SiR_3)_{12}$ in the reactions of primary silylphosphanes, R_3Si-PH_2 (R = bulky alkyl group) with RLi (Eqn. $(\bar{3})$, Scheme 1) [6]. The structures of these novel aggregates are schematically depicted in Fig. 1. In [Li₁₆(P- $SiR_3)_{10}$], the sixteen Li⁺ ions form a closed polyhedron with eight pentagonal and two square planar faces. Remarkably, eight of the ten P-SiR₃ units can be considered as $(P-SiR_2)^{2-}$ dianions which two correspond to neutral P-SiR₃ phosphinidene fragments (likely capping the square planar faces on the top and bottom of the $(Li_{16})^{16+}$ polyhedron shown in Fig. 1a). The $[Li_6 O \subset Li_{20}(P SiR_{3}_{12}$] aggregate (Fig. 1b) represents a member of the so-called 'onion-cluster' where a [Li₆O]⁴⁺-octahedron is fully encapsulated by a Li20-dodecahedral shell where each $(P-SiR_3)^{2-}$ unit caps a pentagonal face. These two examples show that complex redox reactions and fascinating structures will be part of the chemistry of RPM₂ compounds. $(RP)^{2-}$ dianions have also been characterized as $[RPM]_n$ aggregates with divalent main group element metals $M = Mg^{2+}$ [7], Sn^{2+} ; n = 6 [8] or with copper cations $M = Cu^+$, n = 12 [8]. In Fig. 1c we show schematically the structure of $[Mg_6{PSi(iPr)_3}_6]$ which corresponds to a distorted hexagonal prism.

2. Results and Discussion

Firstly, we re-investigated the dehalogenation reaction of PhPCl₂ with reducing metals as the alkali metals Li-K, Mg, and Zn [9][10]. In our hands, this reaction gives the cyclic oligo(phenyl)phosphanes (PhP)_n and the pentaphenylcyclopentaphosphane (n = 5) can be obtained in pure form in >90% yield after one re-crystallization of the crude reaction mixture. The best results were obtained with thermally activated zinc in thf as solvent (Scheme 2). Remarkably, while fresh solutions of highly pure (PhP)₅ (obtained by several crystallizations from acetonitrile or diethylether) only show the complex multiplet for a ABCDE spin-system in the ³¹P NMR spectrum, the singlets for (PhP)₆ and (PhP)₄ were observed after keeping the C₆D₆ solutions for some hours at room temperature.

^{*}Correspondence: Prof. Dr. H. Grützmacher Department for Chemistry and Applied Biosciences ETH Hönggerberg, HCI H 131 CH-8093 Zürich Tel: +41 1 632 28 55 Fax: +41 1 633 10 32 E-Mail: gruetzmacher@inorg.chem.ethz.ch

Scheme 1. Synthetic pathways leading to M_2PR and MPR compounds

Fig. 1. a) $\text{Li}_{16}(\text{P-SiR}_3)_{10}]$; b) $[\text{Li}_6 \bigcirc \text{Li}_{20}(\text{P-SiR}_3)_{12}]$; c) $[\text{Mg}_6\{\text{PSi}(\text{iPr}_3)\}_6]$. Only the metal (dark), the phosphorus (light), and silicon (grey) atoms are shown. The polyhedron formed by the metal atoms is highlighted.

Scheme 2. Reductive bond formation (RPF) of (PhP)₅ using PhPCl₂ and reducing metals, and reductive bond cleavage (RBC) of (PhP)₅ leading to oligo(phosphandiides) $[Na_2(P_nPh_n)(solv)_x]$; x = unspecified number of solvent molecules

Fig. 2. a) Structure of the $[Na_5(P_2Ph_2)_3(dme)_3]$ anion in **5b**. b) Structure of **6**. c) Structure of **7**. Only the Na, P, and *ipso*-carbon atoms of the phenyl groups are shown. The ion triple structures are indicated by dotted lines.

The reductive bond cleavage (RBC) reactions of (PhP)_n were first investigated using sodium as reducing metal and different solvents and solvent mixtures. Especially, reactions performed in tetramethylethylenediamine (tmeda)/ toluene gave clean products. Depending on the stoichiometric ratio (PhP)₅/ Na, we obtained $[Na_2(P_2Ph_2)(tmeda)_{0.5}]_n$ $(5a), [Na_2(P_3Ph_3)(tmeda)_3]$ (6), or $[Na_2(P_4Ph_4)(tmeda)_2]$ (7) as products. Crystallization of 5a from dimethoxy ethane (dme) gave $[Na(dme)_3]^+$ $[Na_5(P_2Ph_2)_3(dme)_3]^-$ as crystalline compound. The structures of 5b, 6 and 7 were determined by X-ray diffraction and sketches are shown in Fig. 2 [11]. While the structures of 6 and 7 have been previously proposed on the basis of ³¹P NMR data [12], the structure of 5b is without precedence [1c][12a][13]. More recently, Hey-Hawkins et al. investigated $[Na_2(P_4Ph_4)(thf)_5]$, $[Na_2(P_4tBu_4)(thf)_4]$ which have structures similar to 7, and $[Na_2(P_4Mes_4)(thf)_4]$ and $[K_2(P_4Mes_4)(thf)_6]$ which have slightly

different structures [14]. However, in all structures the two alkali cations and the oligophosphandiide dianion, $(P_nPh_n)^{2-}$ form *ion triples* [15]. Our NMR investigations show that **5b** and **6** retain the solid-state structures in solution. For **7** we have indications that an equilibrium involving the solvent separated ion pair **8** is involved (Scheme 3). Under the assumption that the five-membered NaP₄-ring in the anion [Na(P₄Ph₄)(solv)_x] has a (puckered) envelope structure, the observed ³¹P NMR pattern for a ABCD spin system can be explained (x stands for an unspecified number of solvent molecules).

However, when both sodium cations are removed by complexation with [2.2.2]cryptand (C222), the resulting 'naked' tetraphosphandiide chain $(Ph_4P_4)^{2-}$ decomposes partially into the diphosphene radical anion $(Ph_2P_2)^{-1}$ [16]. Note that in all the structurally characterized $[M_2(P_4Ph_4)]$ ion triples, the two internal phosphorus centers have $2R_3R/2S_3S$ -configurations, *i.e.* the ion triple are obtained as racemic mixtures of the chiral threo-isomers. Upon rapid crystallization, red and yellow crystals of $[Na(C222)]_2^+$ (Ph₄P₄)²⁻ were obtained. While the yellow crystals contain the 2*R*,3*R*/2*S*,3*S*-configured diastereomer, remarkably, the red ones consist of the meso-isomer 2*R*,3*R*-(Ph₄P₄)²⁻ which has the phenyl substituents sterically favorably arranged.

The evolution of the disodium(oligophosphandiides), $[Na_2(P_nPh_n)]$ in the reaction of (PhP)5 with sodium in thf was qualitatively followed by ³¹P NMR spectroscopy (Fig. 3). Interestingly, as (PhP)₅ is consumed (black columns), the tetraphosphandiide $[Na_2(P_APh_A)(thf)_r]$ (7) is formed (white columns). After a certain time, the ionic cluster $[Na(thf)_6]^+$ $[Na_5(P_2Ph_2)_3(thf)_x]^-$ (5) (striped columns) starts to form. At the same time, the triphosphandiide $[Na_2(P_3Ph_3)(thf)_v]$ (6) (grey columns) starts to build up; however, its concentration remains low at all times. In a separate experiment, [Na(dme)₃]⁺ $[Na_5(P_2Ph_2)_3(dme)_3]^-$ (5b) was reacted

121

Scheme 3. Possible equilibrium between the ion triple 7 and solvent separated ion pair 8

with $[Na_2(P_4Ph_4)(thf)_x]$ and indeed in a slow reaction **6** is obtained as the major product.

Qualitatively, the same kind of observations are made when $(PhP)_5$ is reacted with lithium pieces in thf. Firstly, $[Li_2(P_4Ph_4)(thf)_x]$ is formed at the expense of the cyclo(pentaphosphane). After complete conversion, the formation of $[Li_2(P_2Ph_2)(thf)_x]$ is observed while only minor concentrations of $[Li_2(P_3Ph_3)(thf)_x]$ are seen. Interestingly, almost quantitative formation of the latter compound is obtained when the reaction is carried out in dme where $[Li_2(P_3Ph_3)(dme)_3]$ is sparingly soluble. The main differences in the reactions of $(PhP)_5$ (or $PhPCl_2$) with lithium compared to those with sodium are:

- i) The reactions with lithium are considerably faster.
- ii) The ion triples $[Li_2(P_nPh_n)(solv)_x]$ with n = 3, 4 show a higher tendency to dissociate into solvent-separated ion pairs $[Li(solv)_x]^+$ $[Li(P_nPh_n)(solv)_x]^-$ because of the higher solvation energies of lithium in organic solvents.

iii) While thf solutions of $[Na_2(P_4Ph_4)(thf)_x]$ are EPR-silent, solutions of the lithium analogue clearly show the typical EPR signal for the $(Ph_2P_2)^{-r}$ radical anion. That is, complexation of the lithium ions in thf is sufficiently strong to generate small amounts of the 'naked' $(Ph_4P_4)^{2-r}$ chains (not detected) which subsequently decompose.

These observations lead us to propose a qualitative scheme for the formation of oligo(phosphandiides) from PhPCl₂ and lithium or sodium as reducing metal: Reduction of $(PPh)_5$ by the alkali metal M = Li, Na to give a short lived $[M(PPh)_5 - (solv)_r]$ radical anion (not detected by EPR indicating a life time $t < 10^{-9}$ s) which may rapidly dimerize and decompose to give $[M_2(P_4Ph_4)(solv)_x]$ as the first detectable product. Note, that we have no indications for longer chain dianions. We assume that $[M_2(P_4Ph_4)(solv)_x]$ partially dissociates to give very small amounts of the radical ion pair $[Na^+(solv)_x(P_2Ph)_2^{-}]$ which can be detected for $M = L\overline{i}$. It is reasonable to assume that this species with its energetically

low-lying SOMO is reduced in a very fast single electron transfer reaction to give the $[M_2(P_2Ph_2)(solv)_x]$. This mechanism takes into account that at no time of the reaction, larger amounts of the tri(phosphandiide) $[M_2(P_3Ph_3)(solv)_x]$ are observed.

Remarkably with respect to the intention of this work, we have no indications for the formation of compounds of formula $[M_2PPh]_n$. These remain elusive and likely are not formed in a reductive bond cleavage reaction of oligo(phosphanes). A reason for this may be the high stability of the ion triples $[M_2(P_2Ph_2)(solv)_x]$ which are not further reduced neither degraded by phosphorus nucleophiles.

Acknowledgements

This work is the result of a fruitful collaboration between the ETH Zürich and the Ciba Specialty Chemicals Inc which funded this research. We particularly thank Dr. S. Boulmaâz, Dr. D. Leppard, Dr. J.-P. Wolf, Dr. P. Murer, Dr. J. Wieland, Dr. B. Dill, and Dr. R. Sommerlade for stimulating discussions.

Received: January 6, 2005

- For an improved synthesis see: Z.-W. Wang, L.-S. Wang, *Green Chemistry* 2003, 5, 737.
- [2] Reviews: a) K. Issleib, Z. Chem. 1962, 2, 163; b) M. Baudler, K. Glinka, Chem. Rev. 1993, 93, 1623. See also: c) K. Issleib, K. Krech, Chem. Ber. 1966, 99, 1310; d) A. Schisler, P. Lönnecke, U. Huniar, R. Ahlrichs, E. Hey-Hawkins, Angew. Chem. 2001, 113, 4345, and lit. cited therein.
- [3] See for example the syntheses of 2,5-digerma or 2,5-distanna-phospholanes with PhPLi₂: a) C. Couret, J. Satgé, J. Escudié, J.D. Andriamizaka, J. Organomet. Chem. 1977, 132, C5; b) J.D. Andriamizaka, C. Couret, J. Escudié, J. Satgé, Phosphorus Sulfur 1982, 12, 265; c) C. Lee, J. Lee, S.W. Lee, S.O. Kang, J. Ko, Inorg. Chem. 2002, 41, 3084. Bis(silyl)-, germyl-, and stannyl phosphanes with PhPK₂: d) H. Schuhmann, H. Benda, Chem. Ber. 1971, 104, 333, and lit. cited therein; e) M. Baudler, A. Zarkadas, Chem. Ber. 1973, 106, 3970.
- PhPNa₂ was assumed as by-product in the reaction of (PhP)_n with sodium: a) W. Kuchen, H. Buchwald, *Chem. Ber.* 1958, *91*, 2296; b) PhPLi₂ was assumed as intermediate in the synthesis of PhP(SiMe₃)₂ from PhPCl₂, 4 Li, and 2 Me₃SiCl: R. Appel, K. Geisler, *J. Organomet. Chem.* 1976, *112*, 61.
- [5] It is assumed that PhPLi₂ forms when Ph-PH₂ is deprotonated with organyllithium compounds, RLi; R = Ph: K. Issleib, A. Tzschach, *Chem. Ber.* **1959**, *92*, 1118. For reactions with nBuLi see [3a-c].
- [6] Review: M. Driess, *Adv. Inorg. Chem.* 2000, *50*, 235; and lit. cited there.

122

- [7] a) M. Westerhausen, M. Krofta, A. Pfitzner, *Inorg. Chem.* **1999**, *38*, 598; b) M. Westerhausen, S. Schneiderbauer, J. Knizek, H. Nöth, A. Pfitzner, *Eur. J. Inorg. Chem.* **1999**, 2215.
- [8] M. Driess, S. Martin, K. Merz, V. Pintchouk, H. Pritzkow, H. Grützmacher, M. Kapp, Angew. Chem. Int. Ed. Engl. 1997, 36, 1894.
- [9] Synthesis of (PhP)_n by reductive bond formation (RBF): PhPCl₂/Li: a) P.R. Bloomfield, K. Parvin, *Chem. Ind.* 1959, *541*. PhPCl₂/Na; b) F. Pass, H. Schindlbauer, *Monatsh. Chem.* 1959, *90*, 148; c) L. Horner, P. Beck, H. Hoffmann, *Chem. Ber.* 1959, *92*, 2088; d) see [4]. PhPCl₂/Zn: U. Schmidt, C. Osterroht, *Angew. Chem.* 1965, *77*, 455; PhPCl₂/Mg; e) W.A. Henderson, M. Epstein, F.S. Seichter, *J. Am. Chem. Soc.* 1963, *85*, 2462; f) A. Hinke, W. Kuchen, *Chem. Ber.* 1983, *116*, 3003.
- [10] H. Grützmacher, J. Geier, H. Schönberg, M. Scherer, D. Stein, S. Boulmaâz, WO2004/050668.
- [11] J. Geier, H. Rüegger, M. Wörle, H. Grützmacher, Angew. Chem. 2003, 115, 4081;

Angew. Chem. Int. Ed. 2003, 42, 3951.

- [12] a) [M₂(P_nPh_n)], M = Li–Cs, n = 3, 4: P.R. Hoffman, K.G. Caulton, *J. Am. Chem. Soc.* 1975, 97, 6370; and b) M. Baudler, D. Koch, *Z. anorg. Allg. Chem.* 1976, 425, 227; c) [M₂(P₃Ph₃)], M = Na; K: M. Baudler, D. Koch, E. Tolls, K.M. Diedrich, B. Kloth, *Z. anorg. Allg. Chem.* 1976, 420, 146.
- [13] The synthesis of [Na₂(P₂Ph₂)] is reported in: a) J.W.B. Reesor, G.F. Wright, J. Org. Chem. 1957, 22, 385; [Li₂(P₂Ph₂)] and [K₂(P₂Ph₂)] have been described in [1c][12a] but in any case spectroscopic data were given.
- [14] R. Wolf, A. Schisler, P. Lönnecke, C. Jones, E. Hey-Hawkins, *Eur. J. Inorg. Chem.* 2004, 16, 3277.
- [15] A. Streitwieser Jr., Acc. Chem. Res. **1984**, *17*, 353.
- [16] J. Geier, J. Harmer, H. Grützmacher, Angew. Chem. 2004, 116, 4185–4189; Angew. Chem. Int. Ed. Engl. 2004, 43, 4093–4097.