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and Molecules in Condensed Phase 
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Abstract: Recent applications of one-electron equations for embedded electron density introduced originally for 
multi-level modeling of solvated molecules (T.A. Wesolowski, A. Warshel, J. Phys. Chem. 1993, 97, 8050) are re-
viewed. The considered applications concern properties directly related to the electronic structure of molecules 
(or an atom) in condensed phase such as: i) localized electronic excitations in a chromophore involved in a hy-
drogen-bonded intermolecular complex; ii) UV/Vis spectra of acetone in water; and iii) energy levels of f-orbitals 
for lanthanide cations in a crystalline environment. For each case studied, the embedding potential is represented 
graphically and its qualitative features are discussed.
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numerically the Schrödinger equation (even 
very approximately) are not applicable for 
systems of the nano- and macroscopic size. 
Therefore, a computer model can represent 
only a fragment of the real macroscopic 
system. A brute-force strategy in modeling 
such systems consists of using a model com-
prising the molecule(s) of primary interest 
and as large as possible number of atoms 
in its(their) environment. Such a strategy 
limits the accuracy of the obtained results 
because only methods providing approxi-
mate solutions of the Schrödinger equation 
of medium quality can be applied in prac-
tice for systems including several hundreds 
of atoms. An alternative to finding approxi-
mate solutions of the Schrödinger equation 
for the whole system is to use the embed-
ding strategy. The main idea of this strategy 
is to use different approximate methods to 
solve the Schrödinger equation for different 
parts of the whole system. In particular, not 
to solve the Schrödinger equation for the 
environment at all, but to take into account 
its presence by means of an additional term 
in the potential (embedding potential). The 
embedding strategy is used commonly in 
computer modeling of biomolecules [1], 
solvated molecules [2], and systems rel-
evant for materials science [3]. The sim-
plest practical realization of the embedding 
strategy, commonly applied in so-called 
hybrid quantum/classical methods, uses 
only electrostatic terms in the embedding 

potential, whereas the non-electrostatic ef-
fects are taken into account by means of 
special terms in the conformational energy. 
Such terms, representing exchange-repul-
sion or dispersion interactions for instance, 
are typically system-dependent. 

In 1993, we have shown [4] that the 
embedding potential can be expressed in 
a system-independent way using universal 
functionals of two electron densities: that 
of the embedded system density (ρA) and 
that of its environment (ρB). It is notewor-
thy that electron density is well defined in 
both macroscopic and microscopic worlds. 
Therefore, the electron density partitioning 
strategy offers the formal framework for 
multi-level computer simulations where 
the electron densities of different parts of a 
real macroscopic system are described us-
ing physical laws corresponding to the size 
of each part. In particular, one can restrict 
the Kohn-Sham-like description, which us-
es one-electron orbitals to express the total 
energy of a given electron density (ρA), to 
a subsystem of a microscopic size which is 
of the primary interest (a chromophore for 
instance). In such a case, the one-electron 
functions (embedded orbitals) can be ob-
tained from Kohn-Sham like one-electron 
equations [4]. The electron density (ρB) of 
the remaining part of the total system (envi-
ronment), which can be of the microscopic 
size, is used in these equations to express 
the embedding component of the effective 
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Introduction

Computer modeling of a molecule or other 
polyatomic system in condensed phase, e.g. 
a solvated molecule, relies on two types of 
simplifications: i) the simplification of the 
model of the real system and ii) the simplifi-
cation of the method to solve approximately 
the Schrödinger equation, which is the ba-
sic physical law governing the behavior of 
polyatomic systems. As far as the method 
is concerned, the most accurate quantum 
chemistry methods are, unfortunately, ap-
plicable only for systems comprising a small 
number of atoms. The methods for solving 
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potential by means of universal function-
als of two electron densities (ρA and ρB) 
in these equations. Until recently, we have 
been applying this embedding potential 
only in studies of ground-state properties, 
especially to determine parameters of the 
potential energy surfaces. Such applica-
tions have been already reviewed in this 
journal [5]. This type of studies have been 
continued in our group [6][7]. The present 
review concerns a new type of applications 
dealing with properties directly related to 
the electronic structure such as orbital- 
levels and excitation energies.

The Orbital-free Embedding 
Formalism

Ground-state electron density of an em-
bedded molecule in a given environment can 
be derived from one-electron equations [4]: 

where: ρA is the electron density of the em-
bedded system constructed using one-elec-

tron functions

and ρB is the electron density of the envi-
ronment. Atomic units are applied in all 
equations throughout the text. The super-
script KSCED (Kohn-Sham Equations with 
Constrained Electron Density) is used to in-
dicate that such quantities as the effective 
potential, orbitals, and orbital energies, dif-
fer from the corresponding quantities in the 
commonly used Kohn-Sham [8] equations:

where                                    .

The effective potential in Eqn. (1) differs 
from that in Eqn. (2) by additional terms 
describing the interactions between the two 
subsystems. These terms have a universal 
system-independent form [4] reading:

where NB is the number of nuclei in sub-
system B and Zα

B is the nuclear charge of 
nucleus α in subsystem B. The exchange-

one [12] is based on the computer code 
deMon2K [13] and the other one [14] is 
based on the code ADF [15]. Each of these 
codes has its strengths and weaknesses as 
far as implementation and applications of 
the orbital-free embedding formalism are 
concerned. Such issues will, however, not 
be discussed in detail here. 

The third issue – generating the electron 
density of the environment – depends on the 
system under investigation. Two extreme 
cases can be distinguished. A hydrated or-
ganic chromophore represents the first one. 
In this case, the embedded subsystem is non-
polar but the geometry of the environment 
is flexible. Since the electronic properties 
of the embedded system depend on the ge-
ometry of the environment, statistical aver-
aging using an ensemble of conformations 
of the environment at a given temperature is 
indispensable if the calculated properties are 
to be compared to experimental measure-
ments. In this case, a rapid generation of ρB 
is crucial. Two factors combine in the final 
quality of the results: i) the adequacy of the 
sample of the geometries used for averaging 
and ii) the quality of ρB for each geometry 
of the environment. The effects of these two 
factors on the quality of the calculated aver-
age electronic-structure-dependent observ-
ables are difficult to separate. A charged or 
polar embedded molecule surrounded by a 
structurally rigid environment such as the 
interior or surface of a solid represents the 
second extreme case. Taking properly into 
account electronic polarization of the envi-
ronment determines the overall quality of 
the calculated properties. 

In the subsequent section the recent 
applications of Eqn. (1) will be reviewed. 
The details of calculations are provided 
in the original publications. In this work, 
such quantities as embedding potential and 
embedded orbitals are shown graphically 
to supplement the original data. The poten-
tials, calculated using the deMon2K imple-
mentation at the local-density-approxima-
tion level, are plotted using the OpenDX 
[16] software. The orbitals are plotted using 
the Molekel 4.0 code [17].

Applications

Chromophores in Condensed Phase
Recently, we generalized the orbital-

free embedding formalism to study excited 
states [18]. To this end, the general frame-
work of linear-response time-dependent 
density functional theory (LR-TDDFT) was 
used. This unified formalism is especially 
suited for studies of localized electronic 
excitations in condensed phase. Its first ap-
plication concerned the effect of hydrogen 
bonding on the lowest excitation energies 
in guanine–cytosine and adenine–thymine 
base pairs [14]. These studies showed that 

(1)

(2)

(3)

correlation functional Exc[ρ] is defined as 
in the Kohn-Sham formalism [8] and the 
non-additive kinetic energy Ts

nad[ρ1,ρ2], a 
functional depending on two electron den-
sities, is defined as:

Ts
nad[ρ1,ρ2] = Ts[ρ1+ρ2] – Ts[ρ1] – Ts[ρ2] 

(4)

where Ts[ρ] is the kinetic energy of the ref-
erence system of the non-interacting elec-
trons.

Eqns. (1) and (2) have different solu-
tions, which depend on the environment 
represented in the KSCED embedding po-
tential by means of positions and electric 
charges of atomic nuclei and the electron 
density of the environment. Therefore, cal-
culation of the changes in the electronic 
structure follows a simple strategy – the 
shift of a calculable observable is obtained 
as the difference between the values cal-
culated for the two sets of one-electron 
functions derived from Eqn. (1) and (2), 
respectively. Each time the geometry of the 
environment changes in the process under 
investigation ρB changes also and Eqn. (2) 
has to be solved again. 

Practical applications of the outlined 
strategy involve, however, several chal-
lenging issues: i) availability of good ap-
proximations to the density functionals of 
unknown analytic form (all but the first 
two terms in the right-hand-side of Eqn. 
(3)), ii) an efficient computer implementa-
tion of Eqns. (1)–(3) enabling fast evalua-
tion of embedded orbitals and observables 
of interest, iii) a computationally efficient 
way to obtain the electron density of the 
environment (ρB). As far as the first issue 
is concerned, we developed a very accurate 
system-independent approximation to the 
kinetic-energy-dependent component of 
the embedding potential applicable for such 
cases where the ρA,ρB overlap is small [9]. 
This approximation, labeled GGA97 here, 
uses generalized gradient approximation 
to Ts[ρ] in Eqn. (4) in which the gradient-
dependency has the same analytical form 
as that of PW91 exchange functional [10] 
with coefficients adopted for the kinetic 
energy by Lembarki and Chermette [11]. 
Therefore, applications of the orbital-free 
embedding formalism are currently lim-
ited to the small ρΑ,ρΒ overlap cases. The 
absence of covalent bonding between sub-
systems A and B can be used as a practical 
rule of thumb for applicability of these ap-
proximations. 

The second issue is of a rather technical 
nature but it represents a significant human 
effort. Recently, two efficient computer 
implementations of the orbital-free em-
bedding formalism have been developed 
in our group, each based on codes solving 
Kohn-Sham equations (Eqn. (2)). The first 
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the effect of the environment linked to the 
chromophore via hydrogen bonds can be 
accurately represented by the embedding 
potential of the Eqn. (3) form. Fig. 1 shows 
that deviations between supermolecule and 
embedding results do not exceed 0.05 eV in 
the whole range of calculated shifts vary-
ing between –0.2 and +0.7 eV. The effect 
of hydrogen bonding is not uniform for all 
considered low lying localized excitations. 
Fig. 2 shows that the embedding potential  
           for ρA and ρB being the electron 
densities of guanine and cytosine, respec-
tively. Indeed,                is not uniform in 
 the different parts of the guanine molecule. 
A more detailed analysis of the effect of dif- 
ferent components of                reveals that  
both its electrostatic and non-electrostatic 
components cannot be neglected. Fig. 2 can 
be used as an illustration of a very impor- 
tant property of           . It depends not 
 only on the electron density of the environ-
ment (ρB) but also on that of the embedded 
molecule. Everywhere where the electron 
density (ρA) is small,               is just the 
sum of the electrostatic potential generated 
by the nuclei and electron density of sub-
system B and a non-electrostatic part. Its 
non-electrostatic component calculated by 
means of the approximations considered so 
far has been found to be strongly repulsive 
at large ρA,ρB overlaps. Its global shape re-
flects, therefore, the shape of the cytosine 
molecule. In the space occupied by gua-
nine, however, its global shape reveals more 
local features. For instance, the embedding 
potential changes its sign in the middle of 
the C=O bond which causes its different ef-
fects on the relevant n, π, and π* orbitals 
localized there.

The fact that the effect of hydrogen 
bonding on localized electronic excita-
tions can be adequately represented by 
the KSCED embedding potential using 
the GGA97 set of system-independent ap-
proximations brings important practical 
benefits as far as calculation of solvatochro-
mic shifts is concerned. The equivalence of 
the LR-TDDFT excitation energies derived 
using either Kohn-Sham orbitals for the 
whole system or the embedded KSCED 
orbitals for the chromophore provides the 
basis for significant computational savings 
in computer simulations of solvatochromic 
shifts. Owing to electron density partition-
ing in the KSCED strategy, the ground-state 
level of description is used for the whole 
system but the excited state analysis (the 
most time consuming part of the calcula-
tions) is restricted to the selected subsystem 
only. In our recent computer modeling stud-
ies of excitation spectra of acetone solvated 
in water [19], large clusters (up to 250) of 
water molecules were used to represent the 
environment of this chromophore. For clus-
ters of this size, supermolecule Kohn-Sham 
LR-TDDFT calculations are currently not 
possible. Using        incorporated 
into the general framework of LR-TDDFT 
does not involve any practical difficulties 
for such clusters. It was determined that 
water molecules beyond the radius of 8 Å 
negligibly influence the energies of n→π* 
excitations. It is important to underline that 
the assignment of excitations is not trivial in 
LR-TDDFT calculations because all pairs of 
occupied and unoccupied orbitals can con-
tribute to a given excitation. In the acetone 
case, however, a single pair corresponding 
to HOMO (n) and LUMO (π*) provides the 

dominant contribution. A sample of solvent 
geometries including about 50 water mol-
ecules was used in statistical averaging of 
excitations. This sample, corresponding to 
the canonical ensemble at 300 K, and was 
obtained from Car-Parrinello molecular 
dynamics simulations. Interactions with 
the solvent result in an average shift of 0.23 
± 0.03 eV. The error bar on the calculated 
shift is due to a rather small number (220) 
of geometries in the sample. The calculated 
shift compares very well with the experi-
mental value of 0.20 ± 0.01 eV. Below, we 
analyze in detail the embedding potential 
and embedded orbitals for acetone inside a 
cluster of water molecules at one of the ge-
ometries from the sample used for averag-
ing [19]. The interactions with the solvent 
decrease the orbital energy of HOMO by 
0.54 eV and that of LUMO by 0.29 eV for 
this geometry. The interactions do not affect 
HOMO and LUMO in the same way which 
leads to a shift in the HOMO-LUMO gap 
amounting to +0.25 eV. The largest change 
of both HOMO and LUMO orbitals occurs 
on the carbonyl bond. For LUMO, they are 
localized mostly in the plane perpendicular 
to that of the carbon atoms whereas they are 
localized in the plane of carbon atoms for 
HOMO. A significant effect of the solvent 
on the orbital energies in solvated acetone 
arises from the strong electric field gener-
ated by water molecules. Fig. 3 shows the 
change of the orbitals due to the interactions 
with the solvent. The energy and the shape 
of HOMO and LUMO are, however, not af-
fected in the same way. Fig. 4 shows that 
the embedding potential generated by the 
electron density of the solvent molecules 
is repulsive in the vicinity of the carbonyl 

Fig. 1. The shifts of the lowest lying excitation energies localized in either 
guanine or cytosine in the dimer. The values calculated using embedded 
orbitals are plotted against reference data from supermolecule Kohn-Sham 
calculations.

Fig. 2. Embedding potential generated by the frozen electron density of 
cytosine in the guanine-cytosine complex. The lines are drawn in the plane 
of the molecules at 0.7, 0.04, 0.02, 0.0, and –0.01 atomic units.
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group. It is the most repulsive close to oxy-
gen. 

A smaller effect can be expected if the 
analyzed molecule interacts less strongly 
with its environment as for example in the 
case of dimers formed by nitrogen-con-
taining polycyclic aromatic hydrocarbons. 
These molecules are targets for organic syn-
thesis in the lab of Prof. T. Jenny (Universi-
ty of Fribourg) and are considered as poten-
tial building blocks of organic conducting 
nanocolumns. The most favorable structure 
of such dimers has been found to be that 
of slipped parallel arrangement [6]. Fig. 5 
shows the dimerization-induced changes of 
HOMO and LUMO orbitals of C30H15N. 
It is worthwhile to notice that no apparent 
changes of either HOMO or LUMO occur 
in the vicinity of the nitrogen atom and that 
the changes of the orbitals are delocalized 
throughout the whole molecule. LUMO ap-
pears to be significantly more affected by 

dimerization than HOMO. Comparison of 
the orbital energies in the free molecule and 
in the dimer shows that the energies of both 
HOMO and LUMO are shifted towards 
higher values by about 0.15–0.20 eV as the 
result of dimerization. 

Lanthanides in Crystalline 
Environment

Calculations of the splitting energies of 
f-levels in lanthanide centers in the crystal 
environment represent a challenge for first-
principles based methods. If the lanthanide 
cation and its ligands are described at the 
Kohn-Sham level, the splitting energies are 
usually qualitatively wrong [20]. This was 
attributed to unphysical mixing of ligand 
orbitals with the f-orbitals of the lanthanide. 
This too strong mixing originates from the 
flaws of the known approximations to the 
exchange-correlation potential. In octahe-

dral environment, the f-levels are split into 
three ligand-field induced levels: t2u, t1u, 
and a2u. Application of the orbital-free em-
bedding potential (Eqn. (3)) to calculate the 
splitting energies for the whole lanthanide 
series shows in chloroelpasolite crystals a 
remarkably good agreement with experi-
ment [21]. The calculated t2u–a2u splitting 
energies agree typically within 10% with 
experiments whereas the t1u–a2u ones are 
underestimated by about 20%. For com-
parison, Kohn-Sham calculations lead to 
qualitatively wrong results [20]. It has to be 
underlined that the approximate functionals 
used in these calculations were developed 
based on first-principles and no experimen-
tal data concerning rare-earth elements was 
used. Fig. 6 shows the embedding poten- 
tial             inside the cage formed by six  
Cl– anions calculated for a trial spherically 
symmetric electron density ρA. It increases 
the fastest along the x, y, or z axes. There-
fore, the orbitals oriented along these axes 
can be expected to be the least stabilized 
by the ligands. Indeed, the highest energy 
corresponds to the t1u orbitals which have 
σ character and are oriented along the C4 
axes. The a2u orbital is the most compact 
and its lobes are oriented along the direc- 
tion of the slowest increase of           .  
As a result, the corresponding energy levels 
are the lowest. The numerical value of the 
splitting energies derived from our calcula-
tions can be attributed to the non-additive 
kinetic energy component of a2u. Polariza-
tion of the ligands by the cation provides 
also a noticeable contribution. The electro-
static contribution alone leads, however, to 
a qualitatively wrong picture [21]. 

Conclusions

Owing to recent improvements of the 
computer implementation of the orbital-

Fig. 3. Solvatation induced changes of HOMO (left) and LUMO (right) of 
acetone. Inside the lobes, the magnitude of the change exceeds 0.0035 
atomic units.

Fig. 4. Embedding potential generated by the frozen electron density of the 
solvent (water) molecules. The lines are drawn at 0.07, 0.04, 0.01, 0.005, 
0.0, –0.01, –0.02, –0.03, –0.04, and –0.05 atomic units.

Fig. 5. Dimerization-induced changes of HOMO (left) and LUMO (right) in 
C30H15N. Inside the lobes, the magnitude of the change exceeds 0.0015 
atomic units.
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free embedding formalism, a new class 
of applications concerning the electronic 
structure of embedded molecules became 
recently possible. Details of these ap-
plications have been reported elsewhere 
[14][19][21]. Here, we have provided a 
general review supplemented by addi-
tional analyses involving graphical rep-
resentations of the embedding potential 
in each discussed case. These analyses 
show clearly that the embedding poten-
tial given in Eqn. (3) affects the orbitals 
of the embedded subsystem in a highly 
non-uniform way. This potential compris-
es the ρA-independent electrostatic com-
ponent and the remaining ρA-dependent 
part which becomes strongly repulsive at 
large ρA,ρB overlaps. Finally, it is worth-
while to underline that the used gradient-
dependent approximations to the relevant 
components of the orbital-free embedding 
potential of Eqn. (3) have previously been 
tested and used only for deriving proper-
ties of the ground-state potential energy 
surface for various embedded systems. 
The recent new applications indicate 
clearly that the same approximations can 
be also used to study electronic structure 
and the excited states in particular. 
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