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Abstract: The research activity within our laboratory of computational chemistry at the University of Fribourg is 
presented. In this review, a brief outline of a recently proposed Ligand Field Density Functional Theory (LFDFT) 
model for single nuclear and its extension to dimer transition metal complexes is given. Applications of the model 
to dinuclear complexes are illustrated for the interpretation of exchange coupling in the bis-μ-hydroxo-bridged 
dimer of Cu(II) and to the description of the quadruple metal-metal bond in Re2Cl8

2–. The analysis of the chemical 
bonding is compared with results obtained using other approaches, i.e. the Extended Transition State model and 
the Electron Localization Function. It is shown that the DFT supported Ligand Field Theory provides consistent 
description of the ground and excited state properties of transition metal complexes.
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bond. In simple terms, the ligand donates 
electrons into the empty valence shell of the 
TMI – the partly filled 3d and the empty 4s 
and 4p shells, which leads to metal-centered 
antibonding and ligand-centered bonding 
molecular orbitals (MOs), but these inter-
actions are assumed to be weak enough to 
be treated by perturbation theory. Then, 
electronic transitions giving rise to absorp-
tion and emission spectra in the visible re-
gion are located within the many-electron 
states which originate from a well defined 
dn-configuration of the TMI. Ligand-to-
metal charge transfer (LMCT) transitions 
are not included in this manifold and need 
a different treatment (see below). All these 
features, which are mostly born out by in-
terpretation of experiment, define what we 
call a ‘Werner’ type complex. This group of 
compounds is mainly restricted to TMI in 
their normal oxidation states and to ligand 
anions like F, Cl, Br or molecules such as 
H2O, NH3. Recently, a new model to treat 
their electronic structure has been proposed 
in our group – the Ligand-Field Density 
Functional Theory (LFDFT). Its mathemat-
ical formalism has been described in great 
detail elsewhere [1–3]. Before going on to 
discuss in simple terms what LFDFT is, let 
us first ask why we should use DFT for TMI 
complexes and can we restrict the calcula-
tions of their ground and excited state elec-
tronic structure to a DFT treatment only?

2. A Motivation for DFT

In 1964 Hohenberg and Kohn [4] stated 
that there exists a universal functional of 
the electron density, which is independent 
of the chemical system (accounted for by 
an external potential) and for which the 
ground state energy has its correct minimal 
value for the system. In the formulation of 
their theorem, the electron density was con-
sidered spin free. One year later, Kohn and 
Sham provided a route to a set of working 
equations [5], similar to those of Hartree 
and Hartree-Fock. These Kohn-Sham (KS) 
equations allow, for systems with slowly 
varying density (i.e. not far from a homo-
geneous electron gas) the calculation of the 
electron density self-consistently, starting 
from a reasonable guess. The theory allows, 
finally, the calculation of the electronic en-
ergy and other electronic properties for the 
system from the known electron density. 

In writing down these one-electron 
equations, Kohn and Sham started from a 
reference system of non-interacting elec-
trons and introduced exchange and Cou-
lomb correlation using an approximate ef-
fective potential – the exchange correlation 
potential. It also considers the non-additiv-
ity of the kinetic energy of the electrons 
due to their interactions. Subsequently, the 
Kohn-Sham equations became the building 
block of all user-oriented modern, molecu-
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1. Introduction

An intrinsic feature of transition metal ions 
(TMI) is the rather localized character of 
their 3d electrons and this property, for ex-
ample of free ions like Cr3+, Cu2+, is pre-
served in their complexes, although modi-
fied by covalency however. This allows the 
metal–ligand interaction to be formulated 
as being mainly ionic and the metal–ligand 
bond to be interpreted as a donor–acceptor 
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lar orbital-based DFT programs (KSDFT). 
In fact, approximate functionals of improv-
ing quality have been proposed and applied 
with considerable success to thermochem-
istry, to predict: molecular geometry, force 
fields, infra red (IR), nuclear magnetic reso-
nance (NMR), photoelectron, electron spin 
resonance (ESR), ultraviolet (UV) spectra 
and the reactivity of closed shell organic 
and inorganic (including TMI) systems 
[6–7]. 

A great merit of the DFT is its ability 
to account for electronic correlation, which 
is important for TMI complexes, at compa-
rably low computational costs. This allows 
the calculation of systems of significantly 
larger size than wave function based meth-
ods. However, for open-shell systems, the 
spin-density exhibits, in general, a lower 
symmetry than the electronic Hamiltonian 
(Kohn-Sham or Hartree-Fock); this is be-
cause of the spin-polarization yielding 
spin-densities which are no longer invari-
ant with respect to the rotations of the sym-
metry point group. For example in the case 
of atoms, α (or β) spin possesses cylindrical 
symmetry and violates the spherical sym-
metry e.g. in cases of the C atom (3P ground 
state). 

Even larger problems are encountered 
in TMI in complexes of high symmetry (cu-
bic, octahedral, tetrahedral). Here, orbitally 
degenerate ground states, for example of 
CuF6

4– (2E) or MnF6
3– (5E – high-spin), or 

excited states – CrCl6
3– (4T2) – all with an 

octahedral geometry, cannot be described 
by DFT. Instead, a constraint DFT proce-
dure is applied: an average occupation of 
each degenerate orbital set (e, t2) is used 
in order to provide proper symmetry of the 
space part of the electron density, and a 
spin-restricted open shell procedure is ad-
opted using non-integer and equal number 
of α and β spins in order to ensure correct 
spin-symmetry of the system. 

However, at variance to the spin-re-
stricted open-shell Hartree-Fock theory, 
Roothaan’s spin-coupling operator [8], 
which is state and symmetry dependent, 
is replaced by an orbital independent ex-
change-correlation potential e.g. DFT 
codes, such as ADF [9]. Current- and spin-
density functional theory for inhomoge-
neous electronic systems in strong magnetic 
fields have been developed a long time ago 
[10]. Unfortunately practical implementa-
tions are lacking when compared to the 
theoretical developments. The symmetry 
problem seems to be solved in the open-
shell localized Hartree-Fock approach to 
the exact-exchange Kohn-Sham treatment 
of open-shell atoms and molecules pro-
posed by Sala and Görling [11]. Howev-
er, Coulomb correlation, which, for TMI 
dominates the exchange correlation and 
the necessity to account for non-dynamic 
correlation (via Configuration Interaction 

(CI), see below) still remains beyond the 
reach of the present DFT methodology. We 
can conclude that DFT alone is not able to 
account for both the electronic structure of 
the ground and the excited states of transi-
tion metal complexes and one has to resort 
to other methods or to a combination of 
different methods.

3. Electronic Structure Models 
for TMI Complexes: Ligand Field 
Theory

Ligand field theory is an approximate 
theory, essentially applicable to mono-
nuclear metal complexes. In this theory, 
the valence electrons are separated into two 
sets: (i) active electrons occupying d- (or f-) 
orbitals and (ii) passive electrons occupy-
ing ligand orbitals. The following approxi-
mations are made: 
a)  The interactions of electrons in set (i) 

are treated exactly as in free ions; 
b)  The energies of electrons in set (ii) are 

sufficiently low compared to the ener-
gies of the d-(or f-) orbitals that their 
effect is merely to shield the nuclear 
charges; 

c)  The effect of the passive electrons in 
set (ii) on the active d-(or f-) electrons 
in set (i) is represented by an effective 
potential (or pseudopotential) called the 
ligand field potential which is generally 
represented in the basis of the d- (or f-) 
orbitals as         , where χi, χj are  
either d- or f-orbitals (or both). 
Thus in ligand field theory [12–13], one 

focuses on the dn-configuration and con-
siders the effective Hamiltonian Eqn. (1). 
It includes the one electron effective ligand 
field Hamiltonian h(i) (consisting of kinetic 
and potential energy for each electron) and 
the

H = Σ(i)h(i) + Σ(i,j) G(i,j)                         (1)

two-electron G(i,j) operator which takes 
account of the Coulombic interactions 
between d-electrons (via the 1/rij opera-
tor); summation is carried out over the d-
electrons i>j. We note that the operators 
h(i) and G(i,j) are effective and various 
LF models differ in the way they approxi-
mate these operators. We expand the total 
wavefunction in a basis of Slater determi-
nants (SD) - 45, 120, 210, and 252 SD for 
n = 2(8), 3(7), 4(6) and 5. When acting 
on the SD, the operator H leads to one- 
and two-electron matrix elements, hab and 
Gabcd (Eqn.(2)). In Eqn. (1) and Eqn. (2) 
the symbols i,j(1,2) label electrons and the 
symbols a,b,c and d label orbitals, respec-
tively. In the central field approximation 
the Gabcd integrals are:

hab = ∫ a*(1) h(1) b(1) dτ1

Gabcd = ∫∫ a*(1) b*(2) G(1,2) c(1)  
 d(2) dτ1 dτ2                                  (2)

expressed in terms of the Racah param-
eters A, B, and C, pertaining to the spheri-
cal symmetry but reduced from the free ion 
values by covalency (nephelauxetic effect). 
The ligand field does account for the sym-
metry lowering from spherical to the mo-
lecular point group of the complex due to 
the chemical environment. Thus, in ligand 
field theory the influence of the ligands 
on the TMI is described totally by the 
5×5 ligand field matrix hab whose matrix 
elements reflect both electrostatic(crystal 
field) and covalent(overlap) perturbations 
from the coordinated ligands and thus the 
chemical features of the complex. For an 
octahedral complex and a basis of real d-
orbitals, for example, the 5×5 matrix is a 
diagonal with matrix elements of εe = (3/5) 
10Dq for the eg (ε = dx2–y2, θ = dz2) and 
εt = –(2/5) 10Dq for the t2g(ξ = dyz, η = dzx 
and ζ = dxy) orbitals obeying the baricenter 
rule (2εe + 3εt = 0). The εe – εt orbital en-
ergy difference is nothing but the cubic li-
gand-field splitting parameter 10Dq, which 
is a positive quantity, because of the stron-
ger/weaker σ/π interactions of the eg/t2g or-
bitals. The d-orbital splitting is smaller and 
opposite in a tetrahedral complex, where 
the metal–ligand interactions for e and t2 
orbitals are of π and σ+π type, respectively. 
Thus, for a d2 complex the total of the 45 
electronic states is fully described in terms 
of three parameters only, 10Dq, B, and C. 
The many-electron diagram (Tanabe-Su-
gano diagram, Fig. 1) has been applied 
with success to interpret electronic spectra 
of d2-oxo-anions such as CrO4

4–, MnO4
3–, 

FeO4
2– [14–16], which also allows the de-

termination of the parameters 10Dq, B, and 
C from the spectra.

4. The LFDFT and its Extension to 
Di-Nuclear TMI Complexes

The LFDFT model [1–2] is based on a 
multi-determinant description of the multi-
plet structures originating from the dn con-
figuration of the TMI in the surrounding of 
coordinating ligands by combining the CI 
and the KS-DFT approaches. In doing so, 
both dynamical correlation (via the DFT 
exchange-correlation potential) and non-
dynamical correlation (via CI) is consid-
ered. The latter one accounts for the rather 
localized character of the d-electron wave-
function. The key feature of this approach is 
the explicit treatment of near degeneracy ef-
fects (long-range correlation) using ad hoc 
configuration interaction (CI) within the 
active space of Kohn-Sham (KS) orbitals 
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with dominant d-character. The calculation 
of the CI-matrices is based on an analysis 
of the energies calculated according to KS-
DFT of the single determinants (micro-
states) constructed from frozen Kohn-Sham 
orbitals. The LFDFT procedure consists of 
the following steps: 
(i)  A spin-restricted KSDFT- Self Con-

sistent Field (SCF) calculation corre-
sponding to an Average-Of-Configu-
ration (AOC) dn, where an n/5 occu-
pation of each orbital is carried out. 
This insures that all active electrons 
(d- or f-) are treated on an equal foot-
ing and the interelectronic repulsion 
is regarded as spherical. In doing so, 
we gather all the chemical informa-
tion connected with the ligand field 
of symmetry lower than spherical into 
the one electron (5×5) LF matrix. 

(ii)  Using the Kohn-Sham orbitals from 
the first step and occupying them ad-
equately, the energies of all SD are 
calculated.

(iii)  Finally, the SD energies are utilized 
(using a script, written in MATLAB) 
to obtain all needed model param-
eters – the 5×5 ligand field matrix and 
the parameters B and C – in a least-
squares fit. Comparing SD energies 
from DFT with those calculated using 
LF parameter values, we can state for 
all considered cases that the LF pa-
rameterization scheme is remarkably 
compatible with the SD energies from 
DFT; standard deviations between 
the two sets of SD energies (DFT and 
LFT) are found typically between 0.02 
and 0.1 eV. 

Fig. 1. Tanabe-Sugano diagram for a tetrahedral 
d2 complex (C/B = 4.0)

(4)

(5)

(6)

These parameters are then used in a full 
CI ligand field program to calculate energies 
and electronic properties of all multiplets 
split out of a dn configuration. Symmetry 
analysis is supported by the program, howe-
ver it is a great merit of this approach that it 
is able to calculate systems of symmetry as 
low as C1. This makes the approach suitable 
to bio-inorganic problems including for ex-
ample active sites in enzymes. In particular, 
the 5×5 LF matrix can easily be deduced 
from a single AOC DFT calculation. We 
have shown [2] that the matrix of the LF, 
resulting from the many electron treatment 
is essentially the same (differences between 
two set of data not exceeding 1–2%) as the 
one obtained using the following simple re-
cipe [17]:

Let us denote KS-orbitals dominated by 
d-functions which result from an AOC dn 
KSDFT-SCF calculation with column vec- 
tors      and their energies by      , the lat-
ter defining the diagonal matrix E. From 
the components of the eigenvector matrix 
built up from such columns one takes on-
ly the components corresponding to the d 
functions. Let us denote the square matrix 
composed of these column vectors by U and 
introduce the overlap matrix S:

S = UTU                                                  (3)

Since U is in general not orthogonal, we 
use Löwdin’s symmetric orthogonalization 
scheme to obtain an equivalent set of or-
thogonal eigenvectors (C):

We identify now these vectors with the 
eigenfunctions of the effective LF Hamilto-
nian         and we seek: 

and                                  with the corresponding 
eigenvalues. The 5×5 LF matrix VLF={hμν} 
is given by:

Remarkably, the matrix VLF is obtained 
in a general form without any assumptions 
(such as is done in Crystal Field Theory 
(CFT) or in the Angular Overlap Model 
(AOM)) and accounts for both electrostatic 
and covalent contributions to the ligand 
field. Moreover, being determined in a vari-
ational DFT-SCF procedure, it circumvents 

(7)

assumptions based on perturbation theory. 
It is particularly suited to cases of low sym-
metry and complex coordination geometries 
where application of CFT or AOM, because 
of the large number of model parameters, 
is not easy.

The LFDFT approach has been applied 
and validated using well-documented 
spectra and structures on octahedral and 
tetrahedral TM complexes [1–3]. An ex-
tension of this method allows the estima-
tion of spin-orbit coupling constants [18] 
and for the calculation of g- and fine struc-
ture A-tensors in EPR [19]. With the es-
timation of spin-orbit coupling constants, 
treatment of the zero-field splitting [20] 
and of the paramagnetic contributions to 
NMR shielding constants becomes pos-
sible [21]. 

In the following, the extension of the 
LFDFT method to transition metal dimer 
complexes [22][23] is briefly reviewed. 
Let us assume that two semi-occupied or-
bitals dl1 and dl2 located on both symme-
try equivalent fragments couple to yield 
an in-phase (a) and an out-of-phase (b) 
MO (Eqn. (7)). 

where a and b belong to two different ir-
reps. Moreover we neglect here the over-
lap between dl1 and dl2. Six micro-states 
or Single Determinants (SD) result. Two 
are doubly occupied |a+a–|, |b+b–| and four 
are singly occupied |a+b–|, |a+b+|, |a–b+|,  
|a–b–|. The doubly occupied SD having 
a⊗a = b⊗b = A spatial symmetry, corre-
spond to closed shells and are spin sin-
glets. The SD based on singly occupied 
spin orbitals have a⊗b = B spacial sym-
metry and correspond to a singlet and to 
a triplet. The two SD with MS = 0: |a+b–| 
and |a–b+|, belong both to a singlet and to 
a triplet. The energies of all these determi-
nants can be calculated from DFT. Let us 
denote their energies by

E1 = E(|a+a–|),  
E2 = E(|b+b–|),  
E3 = E(|a+b+|) = E(|a–b–|), 
E4 = E(|a+b–|) = E(|a–b+|)                        (8)

We note that the difference E4–E3 equals 
the exchange integral [ab|ab] which is also 
the quantity accounting for the mixing (1:1 
in the limit of a full localization) between 
the |a+a–| and |b+b–| microstates. This leads 
to the secular Eqn. (9) which after diago-
nalization 
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yields the eigenvalues E– and E+ and the 
energy separation between the lowest sin-
glet state and the triplet E– – E3, referred to 
as the singlet–triplet spitting. The latter is 
identical to the exchange integral in magne-
tism. It is a good measure for the covalence 
stabilization of a bonding electron pair with 
respect to a non-bonding triplet pair. When 
compared in the limit of complete dissocia-
tion these quantities yield the total bonding 
energy.

Let us now consider the formation of 
bonding in terms of a localized model for 
bonding. Within such a model (cf. Ander-
son [24]), dl1 and dl2 are singly occupied 
in the ground state for separate fragments 
giving rise to a triplet and to a singlet with 
wave functions ψT and ψS (Eqn. (10) and 
(11), respectively). There are two further  
singlet states       and         arising when  
either of the two magnetic electrons is 
transferred to the other magnetic orbital 
(SOMO), i.e.

where ψS lies by 2K12 at higher energy than 
ψT. We take the energy of the latter state as 
reference {E(ψT)=0}. K12 is the classical 
Heisenberg exchange integral, 

which is always positive. It reflects the ex-
change stabilization of the triplet over the sin-
glet due to gain in potential energy connected 
with the spatial extension of the Fermi (ex-
change) hole (potential exchange). The ψS 
two-electron wave-function can mix with the 
charge transfer state ψS

CT. Its energy, denot-
ed U, equals the difference between the Cou-
lomb repulsions of two electrons on the same 
center, i.e.|                                  (U11 = [dl1dl1 
|dl1dl1] = U22 = [dl2dl2|dl2dl2]) and when 

We would like to point out that these 
expressions are furthermore related to the 
energies of the single determinants |a+a–|, 
|b+b–|, |a+b+|, |a+b–| (i.e. E1, E2, E3 and E4 
respectively). 

Thus, Eqns. (16)–(18) allow us to ob-
tain K12, U and T12 directly from DFT. We 
get therefore a bonding model in terms of 
localized orbitals, whose parameters are 
readily obtained from the DFT SD energies 
E1, E2, E3, and E4 of the dinuclear complex. 
It is remarkable that the same model can be 
applied with success, both to magnetic ex-
change coupling and to bond analysis. This 
makes it possible to consider magnetic and 
bonding phenomena on the same footing. 
In fact, there is no fundamental difference 
between antiferromagnetism and chemical 
bonding. 

5. Applications

5.1. Exchange Splitting in 
Cu(OH)2Cu Dimers

The usual pattern of an exchange cou-
pling between pairs of TMI with open shells 
is an anti-ferromagnetic spin-alignment 
corresponding to a weak delocalization of 
unpaired spin-density from one center to 
another center, i.e. that of a weak covalent 
bond as described by the term: –4T12

2/U, 
Eqn. (15b). It outweighs the contribution of 
the first term (2K12), the latter tending to 
lower exchange (Pauli) repulsion between 
electrons with parallel spins. It has been 
therefore challenging to find systems where 
the latter effect dominates, leading to ferro-
magnetic spin-alignments. This is the case 
if magnetic orbitals are orthogonal to each 
other or nearly so; a situation encountered 
in edge-sharing square planes or octahedra 
with M1-X-M2 bridging angles β close to 
90º [26]. 

An illustration of this is given by bis-
bipyridyl-μ-dihydroxo-dicopper (II) nitrate 
with a Cu-OH-Cu bridging angle of 95.6º 
and an exchange coupling constant J12 = 
0.021 eV [27]. A DFT-LDA geometry opti-
mization using a [(NH3)2CuOH]2

2+ model 
cluster leads to a geometry of the bridging 
Cu(OH)2Cu2+ moiety very close to the ex-
perimental finding (Fig. 2). Unpaired elec-
trons on Cu2+ are characterized by a dx2–y2 
ground state which is weakly affected by 
long axial contacts to NO3

–, which we 
neglect here. The exchange coupling con-
stant J12 = 0.021 eV calculated by LFDFT 
matches perfectly well the experimental 
value, but deviates from the prediction of 
an antiferromagnetic coupling given by the 
broken symmetry (BS) DFT approach [28] 
(J12

BS = –0.099 eV). 
In Fig. 3, we compare energies of the 

four independent Slater determinants as 
given by our procedure with the state ener-
gies after taking the |a+a–|–|b+b–| configu-

(9)

(10)

(11)

(12)

(14)

(15b)

(17)

(18)

(16)

(15a)

they are located on different centers (the 
notation U12 = [dl1dl1|dl2dl2] applies). Thus 
the energy separation between the dl1

2(or 
dl2

2) excited state and the dl1
1dl2

1 ground 
state configurations is:

U = U11–U12                                         (13)

U is also a positive quantity. The inter-
action matrix element between ψS and ψS

CT 
(Eqn. (14)) reflects the delocalization of the 
bonding electrons due to orbital overlap. 
The quantity t12 = <dl1|h|dl2> is referred to 
as the transfer (hopping) integral between 
the two sites. Thus, we obtain:

Calculations show that T12 = t12 in a 
very good approximation, differences being 
generally less than 0.002 eV. This term tends 
to lower the singlet- over the triplet-energy 
and is intrinsically connected with the gain 
of kinetic energy (kinetic exchange). The 
interaction matrix (Eqn. (15a)) describes 
the combined effect of these two opposite 
interactions. Using perturbation theory one 
obtains Eqn. (15b) for the singlet–triplet 

energy separation     , i.e. the exchange 
integral. As has been pointed out in [25], 
the parameters K12, U and T12 can be ex-
pressed in terms of the Coulomb integrals 
(Jaa, Jbb and Jab), exchange integral Kab and 
of ε(b)–ε(a), the KS-orbital energy differ-
ence. Eqns. (16)–(18) below, resume these 
relations:
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rational mixing into account. The former 
configuration is stabilized by localization 
leading to a final singlet state, but it does 
not cross (in contrast to the usual case) the 
triplet term T. Experimental data show [27] 
that J12 becomes strongly antiferromag-
netic when the Cu-O-Cu bridging angle (β) 
is increased by structural manipulations al-
lowing one to tune the magnetic properties. 
Thus the increase of the value of β to 104.1º 
in [Cu(tmen)OH]2Br (tmen = N,N,N´,N´-
tetramethylethylenediamine) agrees with the 
reported negative value of J12 (–0.063 eV) 
[26]. Antiferromagnetism for this geometry 
is also obtained by LFDFT, but the resulting 
value exceeds now the experimental value 
by a factor of 2.88 (however the BSDFT 
value is off by a factor of 4.61). The reason 
is that DFT leads systematically to lower 
values for the energy U, which causes an in-
crease of the –4T12

2/U, in cases where this 

term plays an important role (see [22] for 
further examples and for an analysis).

It is remarkable that ferromagnetic con-
tributions to J12 (2K12, Eqn. (15b)) seem 
to be described realistically by the LFDFT 
procedure and our results show that these 
terms could be indeed rather important (as 
large as 0.061 eV in the chosen example). 
Such terms have been neglected in earlier 
studies [29] or deemed to be small by physi-
cists [24].

5.2. Metal–Ligand and Metal–Metal 
Bonding in Re2Cl8

2–

The discovery of a strong Re–Re bond 
in the Re2Cl8

2– anion in 1965 [30–32], 
termed quadruple bond, opened a new area 
in inorganic chemistry. Moreover, it con-
tributed to initiate studies which helped to 
understand and to validate our knowledge 
about the chemical bond, based on the clas-
sical paper by Heitler-London [33] and on 
the Coulson-Fischer description of the two-
electron bond in the H2 molecule [34]. An 
excellent review of all developments cov-
ering both experiment and theory on the δ 
bond in the Re2

6+ and Mo2
4+ cores along 

with reference to original work has been 
published recently [35].

To analyze the Re–Re bond in Re2Cl8
2– 

it is reasonable to start from the two square 
pyramidal ReCl4

2– fragments. For this co-
ordination, the |5d> orbitals of Re are split 
into 6a1(dz2), 2b2(dxy), 6e(dxz,yz), and 4b1 
(dx2–y2) species whose energies and com-
positions are depicted in Fig. 4 (left). The 
dz2 orbital is antibonding, but is largely sta-
bilized by the 5d-6s mixing which pushes it 
down, thus making it lowest in energy. This 
mixing is such that it increases the lobes 
along the axial direction and thus enhances 

the Re–Re overlap in the dimer. It follows 
that the Re–Cl bonding in the ReCl4

– frag-
ment, which leads to 5d-6s hybridization 
has an indirect enforcing effect on the Re–
Re σ-bond. The energies of the 6e and 2b2 
orbitals of the ReCl4

– unit indicate a strong 
Re–Cl π-bonding interaction (out-of-plane 
and in-plane interactions with respect to 
the ReCl4

– plane for 6e and 2b2, respec-
tively), which are calculated to lie at almost 
the same energy. They give rise to π and δ 
Re–Re bonds, respectively. All four orbit-
als, 6a1, 2b2, and 6e are singly occupied in 
ReCl4

2– and yield four bonds between the 
two ReCl4

– units: one σ, two π and one δ 
bond. A rough measure for the strength of 
these bonds are the spittings of the a1(9a1, 
12a1), e(11e,12e), and b2(3b2,4b2) orbitals, 
which are calculated to be 5.42, 3.58, 0.70 
(Fig. 4, right), thus reflecting a decrease of 
bond strength from σ to π to δ.

This is clearly manifested by the plots of 
the electronic localization function (ELF) 
[36] (Fig. 5) which takes values between 1 
(electron localization) and 0 (no localiza-
tion) and thus reflects the concentration of 
charge into bonding or non-bonding do-
mains. Thus, while the plot in Fig. 5a does 
not show any indication of accumulation 
of electron charge between the Re nuclei, 
the symmetry partitioned ELF plots (Fig. 
5b,c) nicely reflect this. The spectacular 

Fig. 2. Bond distances (in Å) and bond angles 
(in º) from a DFT geometry optimization (spin-
unrestricted, S = Ms = 1, LDA-VWN functional, 
non-relativistic TZP basis,Cu-2p, O-1s, N1-
s, frozen cores) of a [Cu(NH3)2(OH)]2

2+ model 
cluster and experimental parameters (in square 
brackets) as reported from X-ray diffraction study 
of bis-bipyridil-μ-dihydroxo-dicopper(II) nitrate 
[Cu(C10H8N2)(OH)-(NO3)2], R.J. Majeste, E.A. 
Meyers, J. Phys.Chem. 1970, 74, 3497.

Fig. 3. Correlation diagram between the energies of single determinants from 
DFT and the resulting multiplets of relevance for the magnetic exchange 
coupling in a [Cu(NH3)2(OH)]2

2+ model cluster with a ferromagnetic spin 
alignment. Model parameters for the calculation of the diagram (right), 
deduced from the DFT SD energies E1, E2, E3, E4 (–4.434, –3.798, –4.692, 
–4.238 eV, diagram left) are K12 = 0.061, t12 = 0.159, U = 0.909.

Fig. 4. Kohn-Sham MO-energy diagram for 
Re2Cl8

2– and its correlation with the KS-MO 
levels dominated by 5d orbitals and their 
percentages of the constituting ReCl4

– (C4v 
symmetry) fragment. For the sake of a better 
comparison, KS-MO energies for each cluster 
have been plotted taking their baricenter energy 
as a reference. Electronic ground state notations 
refer to C4v (common symmetry for ReCl4

– and 
Re2Cl8

2–).
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feature of these plots is the σ-bond path-
way which shows a bond-localization at-
tractor between the Re nuclei but not only. 
Indeed, the plot for π symmetry reflects 
a much weaker yet non-negligible bond-
ing effect, while the one for δ does not 
display any bonding features. Apparently, 
the δ-bonding in Re2Cl8

2– can be regarded 
as a weak bond which might as well be 
considered as a strong antiferromagnetic 
coupling (see below). This interaction 
can be fully destroyed when going from 
the eclipsed (D4h) to the staggered (D4d) 
conformation. For this latter geometry, the 
δ-orbitals are rotated by 45º with respect 
to each other, leading to strict orthogonal-
ity and to ferromagnetism. This could be 
achieved by chemical tuning [35]. The 
extended transition state (ETS, [37][38]) 
energy decomposition analysis lends sup-
port to this interpretation based on MO 
analysis and ELF plots (Table 1). In this 
analysis the interaction energy between 
two ReCl4– fragments is partitioned into 
an electrostatic energy term ΔEElstat, the 
exchange (Pauli) repulsion energy ΔEPauli 
and orbital interaction term ΔEorb, which 
is further subdivided into terms pertaining 
to each orbital symmetry. The absence of 
δ-bonds in the D4d geometry also explains 
the larger stability (by –0.65 eV for ΔEint) 
of the eclipsed compared to the staggered 
form. The ΔEint energy change when going 
from the D4h to the D4d complex is a result 
of the balance between the ΔEPauli term 
(which is in favor for the D4d geometry, 
δΔEPauli = –0.59 eV) and ΔEorb (δΔEorb = 
1.02), and to a lesser extend to the ΔEElstat 
term (δΔEElstat =0.23 eV, i.e. both ΔEorb 
and ΔEElstat are in favor of the D4h geom-
etry). It is interesting to note that all con-
tributions to ΔEorb become less negative 
when going from D4h to D4d. However, re-
duction in bond strength in this direction 
is dominated by δ[ δΔEorb(δ) = 0.72 eV], 
followed by π and then by σ[ δΔEorb(π) = 
0.19 and δΔEorb(σ) = 0.11 eV]. 

Yet another possibility to analyze Re–
Re σ, π, and δ bonds within DFT is to ap-
ply our extended LFDFT model to each of 
them. This can easily be done for σ and δ 
symmetry because for each type of bond-
ing there are two MOs and two electrons 
available in D4h symmetry. This allows an 
analysis along the lines of a homonuclear 
diatomic m.o. problem for each of the two 
bonding modes separately. This is similar 
to a discussion of bonding in these systems 
in which δ electrons are being considered 
as decoupled from the π and σ-electrons 
(Bursten and Clayton [39]). For π-bonds, 
there are four electrons and four orbitals 
which makes the analysis cumbersome. 
However, also in this case, an approximate 
treatment can be given, restricting the con-
sideration to two electrons distributed over 
only two orbitals – bonding and antibond-

ing, each of them transforming as one of 
the components of the doubly degenerate 
orbital e.

In Table 2 we include singlet triplet sep-
arations J12, corresponding to σ, π, and δ 
bonding, obtained from DFT calculations. 
Re–Re bond energies decrease from σ to 
π to δ following the lines of the MO and 
the ETS analysis. It is interesting to note 
that the δε(λ) (λ = σ, π, δ) splittings of the 
KS-MO energies and J12(λ) are very close 
in magnitude and nearly equal to the values 
of the hopping integral t12. This reflects the 
common covalent origin of these param-
eters. At the same time, ΔEorb(λ) deduced 

from the ETS analysis are larger than J12(λ) 
and δε(λ) (Table 2). Possibly polarization 
effects contribute to this difference. The 
parameter K12 is just the ferromagnetic ex-
change integral which may become opera-
tional in the limit of zero overlap. It leads to 
a triplet (3A2) ground state in the staggered 
(D4d) conformation of Re2Cl8

2– where δ 
bonding is fully suppressed.

6. Conclusions

The LFDFT models developed in our 
group turn out to be able to calculate elec-
tronic multiplet structures as well as fine 

Fig. 5. Electronic localization function for Re2Cl8
2– taken within a plane containing the Re–Re bond 

and four Cl ligands belonging to the constituting ReCl4
– fragments. Contour diagrams have been 

plotted using the total density (a); the Re–Re σ-density – a1(C4v) symmetry (b); the Re–Re π-density 
– e(C4v) symmetry (c); and Re–Re δ-density – b2 (C4v) symmetry (d). See Fig. 4 for symmetry notations 
and a correlation diagram within the C4v subgroup, common for the dimer D4h Re2Cl8

2– and the 
ReCl4

– fragment.

Table 1. The unique bonding situation in Re2Cl8
2- with a bonding energy partitioned with respect to two 

non-interacting Re2Cl4
1-  sub-units in its eclipsed (ideal for δ-bonding) and its staggered (δ-bonding 

is abolished) conformationsa

ΔEPauli ΔEElstat ΔEorb ΔEint ΔEorb(a1) ΔEorb(a2) ΔEorb(b1) ΔEorb(b2) ΔEorb(e)

eclipsedb 
  (D4h)
25.46 -10.31 -20.79 -5.64 -10.63    0.00

  
 
 -0.07

 
 
 -0.80  -9.29

staggeredc

  (D4d)
24.87 -10.08 -19.77 -4.99 -10.52   0.00

  
 -0.08  -0.08

 
-9.10

a Scalar relativistic ZORA calculations
b 9a1

2(σ).11e(π)4.(3b2,4b2(δ))2 – singlet ground state
c 9a1

2(σ).11e(π)4.(3b2,4b2(δ))2 – triplet ground state; C4v symmetry notations

a 

d

b

c
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structures not only for single nuclear, but 
also in dinuclear TMI complexes. In this 
case, not only magnetic exchange, but also 
the metal–metal chemical bond can be in-
terpreted and well understood in terms of 
interactions between orbitals in the active 
space of the d-electrons. They can be used 
to interpret bonding and magnetic phenom-
ena on the same footing and are valuable in 
addition to other methods for the study of 
the chemical bond, e.g. the extended transi-
tion state method, the electron localization 
function and analysis of the Laplacian of the 
electron density (Bader analysis). Following 
a more general, symmetry-based formalism 
[40] the method can be extended to charge 
transfer spectra. Its ability to also treat spec-
tra of rare-earth and actinide complexes is 
presently being explored in our group [41].

 
Acknowledgement

This study was supported by the Swiss 
National Science Foundation, the Bundesamt 
für Forschung and Wissenschaft (Swisse) 
and a COST Action of the European Science 
Foundation.

Received: May 19, 2005

[1]  M. Atanasov, C.A. Daul, C. Rauzy, Chem. 
Phys. Lett. 2003, 367, 737.

[2]  M. Atanasov, C.A. Daul, C. Rauzy, Struc-
ture and Bonding 2004, 106, 97. 

[3]  C.A. Daul, Chimia 2004, 58, 316. 
[4]  P. Hohenberg, W. Kohn, Phys. Rev. 1964, 

136, B864. 
[5]  W. Kohn, L.J. Sham, Phys. Rev. 1965, 140, 

A1133. 
[6]  T. Ziegler, Chem. Rev. 1991, 91, 651. 
[7]  W. Koch, M.C. Holthausen, in ‘A Chemist’s 

Guide to Density Functional Theory’, Wi-
ley-VCH, Weinheim, 2000. 

[8]  C.C.J. Roothaan, Rev. Mod. Phys. 1960, 
32, 179.

[9]  a) G. te Velde, F.M. Bickelhaupt, E.J. 
Baerends, C. Fonesca Guerra, S.J.A. van 
Gisbergen, J.G. Snijders, T. Ziegler, J. 
Comput. Chem. 2001, 22, 931; b) ADF 
program, release ADF2004.01, web site: 
http://www.scm.com.

[10]  a) G. Vignale, M. Rasolt, Phys. Rev. Lett. 
1987, 59, 2360; b) G. Vignale, M. Rasolt, 
Phys. Rev. B 1988, 37, 10685.

[11]  F.D. Sala, A. Görling, J. Chem. Phys. 
2003, 118, 10439.

[12]  R.J. Deeth, in ‘Comprehensive Coordina-
tion Chemistry II’, Eds. J.A. McCleverty, 
T.J. Meyer, Vol. Ed. A.B.P. Lever, Elsevier, 
2003, Vol. 2, p. 439.

[13]  T. Schönherr, M. Atanasov, H. Adamsky, in 
‘Comprehensive Coordination Chemistry 
II’, Eds. J.A. McCleverty, T.J. Meyer, Vol. 
Ed. A.B.P. Lever, Elsevier, 2003, Vol. 2, p. 
443.

[14]  M.F. Hazenkamp, H.U. Güdel, M. Atana-
sov, U. Kesper, D. Reinen, Phys. Rev. B 
1996, 90, 2367.

[15]  U. Oetliker, M. Herren, H.U. Güdel, U. 
Kesper, C. Albrecht, D. Reinen, J. Chem. 
Phys. 1994, 100, 8656.

[16]  T.C. Brunold, A. Hauser, H.U. Güdel, J. 
Lumin. 1994, 59, 321.

[17]  M. Atanasov, J.-L. Barras, L. Benco, C.A. 
Daul, J. Am. Chem. Soc. 2000, 122, 4718.

[18]  M. Atanasov, C. Rauzy, P. Baettig, C.A. 
Daul, Int. J. Quantum Chem., in press, 
published online on 06.12.2004.

[19]  M. Atanasov, E.J. Baerends, P. Baettig, R. 
Bruyndonckx, C.A. Daul, C. Rauzy, M. 
Zbiri, Chem. Phys. Lett. 2004, 399, 433.

[20]  M. Atanasov, C.A. Daul, C. Rauzy, P. 
Baettig, in preparation.

[21]  M. Atanasov, C.A. Daul, E. Penka Fowe, 
in preparation.

[22]  M. Atanasov, C.A. Daul, Chem. Phys. 
Lett. 2003, 379, 209.

[23]  M. Atanasov, C.A. Daul, Chem. Phys. 
Lett. 2003, 381, 584.

[24]  P.W. Anderson, Phys. Rev. 1959, 115, 2.
[25]  P.J. Hay, J.C. Thibeault, R. Hoffmann, J. 

Am. Chem. Soc. 1975, 97, 4884.
[26]  M. Atanasov, S. Angelov, Chem. Phys. 

1991, 150, 383.
[27]  D.J. Hodgson, Progr. Inorg. Chem. 1975, 

19, 173.
[28]  L. Noodleman, J. Chem. Phys. 1981, 74, 

5737.
[29]  R. Schenker, H. Weihe, H.U. Güdel, Inorg. 

Chem. 1999, 38, 5593.
[30]  F.A. Cotton, N.F. Curtis, B.F.G. Johnson, 

W.R. Robinson, Inorg. Chem. 1965, 4, 
326.

[31]  F.A. Cotton, C.B. Harris, Inorg. Chem. 
1965, 4, 330.

[32]  F.A. Cotton, Inorg. Chem. 1965, 4, 334.
[33]  W. Heitler, F. London, Z. für Physik 1927, 

44, 455. 
[34]  C.A. Coulson, I. Fischer, Philosophical 

Magazine 1949, 40, 386.
[35]  F.A. Cotton, D.G. Nocera, Acc. Chem. 

Res. 2000, 33, 483.
[36]  A.D. Becke, K.E. Edgecombe, J. Chem. 

Phys. 1990, 92, 5397.
[37]  T. Ziegler, A. Rauk, Theor. Chim. Acta 

1977, 46, 1.
[38]  F.M. Bickelhaupt, E.J. Baerends, in ‘Re-

views in Computational Chemistry’, Vol. 
15, Eds. K.B. Lipkowitz, D.B. Boyd, Wi-
ley-VCH, John Wiley and Sons, Inc., New 
York, Chap. 1, 2000.

[39]  B.E. Bursten, T.W. Clayton, Jr., J. Cluster 
Science 1994, 5, 157.

[40]  C.A. Daul, Int. J. Quant. Chem. 1994, 52, 
867.

[41]  M. Atanasov, C.A. Daul, H.U. Güdel, T.A. 
Wesolowski, M. Zbiri, Inorg. Chem. 2005, 
in press.

Table 2. Singlet versus triplet ground state stabilizations in eclipsed Re2Cl8
2- based on a two-electron-

two-center bond model within the single determinant DFT approach of DFT for σ,π and δ bondsa

λ = σ  π δ

J12=E--ET
-5.259
(-4.769)

-3.470
(-3.125)

-0.461
(-0.419)

δε(λ) -5.41 -3.58 -0.704

ΔEorb(λ) -10.633 -9.287 -0.802

K12
0.131
(0.100)

0.060
(0.068)

0.0045
 (0.0045)

t12
5.714
(5.192)

3.757
(3.406)

0.719
(0.656)

U
0.391
(0.456)

0.340
(0.296)

0.630
(0.576)

a Scalar relativistic (non-relativistic, in parenthesis) spin-unrestricted ZORA calculations in D4h 
symmetry with the following configurations for the Re d-orbitals for σ,π and δ bonding: (a+a-)= 
6a1g

26e1u
42b2g

2; (b+b-)=6a2u
26e1u

42b2g
2, 6a1g

26e1u
26eg

2b2g
2, 6a1g

26e1u
42b1u

2; (a+b+ and a+b-)= 
6a1g

16a2u
16e1u

42b2g
2; 6a1g

26e1u
3 6eg

12b2g
2; 6a1g

26e1u
42b2g

12b1u
1.(a,b orbitals under considera-

tion are underlined). Values of the transfer(hopping) integral t12, the Heisenberg exchange integral 
(K12) and the effective transfer energy (U) are also included. Re-Re (2.236Å) and Re-Cl (2.331 Å) 
bond distances are obtained from LDA-DFT geometry optimizations.


