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Abstract: Computational approaches have become an integral part of modern drug discovery and medicinal chem-
istry. These approaches can be roughly classified into data/information mining (or filtering) and modelling/simula-
tion methods. Taken together, they represent an ever growing source of hypotheses used to guide experimental 
approaches and hence drug discovery decisions. Therefore, it is not only important to optimally understand and 
apply existing methods, but also invest in the development of new algorithms to further improve our selection of 
drug candidate. The present contribution will describe a few approaches which have become routine at Novartis.
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However, following the development of 
the CoMFA (Comparative molecular field 
analysis) method by Cramer and coworkers 
[3] 3D structure descriptors became more 
and more popular based on the belief that 
3D descriptors capture the effects relevant 
for binding more efficiently than the sim-
pler 2D descriptors. As described below, 
3D-QSAR models provide easily interpret-
able hints on where and how active com-
pounds should be modified. But to make 
3D methods really work, it is crucial to get 
the binding conformation and molecular 
alignments right. As good methods for this 
are still lacking, this often requires tedious 
manual manipulation of the different struc-
tures. In an industrial research environment 
there is often not the time to do this; for 
large datasets 2D-QSAR methods are there-
fore the method of choice 

Over the last years 2D-QSAR methods 
experienced a renaissance, due to several 
changes in the pharmaceutical industry 
shifting the focus of computational chem-
istry from single compounds to larger da-
tasets. The introduction of combinatorial 
chemistry techniques and improved purifi-
cation methods to the medicinal chemist’s 
lab, paired with new screening methods 
produced a considerable increase of data for 
lead optimisation projects. The volume of 
data is even higher in the analysis of high-
throughput screening (HTS) campaigns and 
valuable SAR information can be extract-
ed, if the results are mined with adequate 
techniques. Another exciting development 
is the appearance of workflow manage-
ment tools that are capable of processing 
structural data (see e.g. SciTegic [4] and 
InforSense [5]). This simplifies working 

with extremely large datasets and leads to 
an increasing automation of computational 
chemistry workflows. Finally, new statisti-
cal approaches have been introduced that 
are robust enough to cope with large and/or 
noisy datasets. Naïve Bayesian classifiers, 
decision trees, random forests, and support 
vector machines are just some of the meth-
ods that have been added to the computa-
tional chemist’s toolkit [6–9]. 

A few applications should help demon-
strate the value of 2D-QSAR approaches. 
While high-throughput screening is often 
perceived as the method of choice for hit 
finding, not every assay can be format-
ted in a way suitable for HTS. Also, it is 
sometimes desirable to extract subsets from 
the screening selection focused on a spe-
cific biological target for tool finding. It has 
been shown that 2D descriptors combined 
with Binary Kernel Discrimination classi-
fiers are useful approaches to develop such 
focused screening sets [10]. Another inter-
esting application developed by Klon et al. 
[6][11][12] is to use a naïve Bayesian clas-
sifier to improve the enrichment of HTD 
results. 

In a recent study, we compared the 
performance of 2D and 3D descriptors in 
regression models [13] using almost 1000 
datasets. In practically all cases, models 
using 2D descriptors were far superior to 
models using the alignment-free 3D Grind 
descriptors [14]. The use of applying 
QSAR models during a lead optimisation 
study was demonstrated in a retrospective 
study by Hirons et al. [15]. The advantage 
of using iteratively refined QSAR models 
was clearly demonstrated. The 2D-descrip-
tors used in this work were specifically de-
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The Renaissance of 2D-QSAR 

In every drug discovery project, a thor-
ough understanding of the structure–activ-
ity relationships (SAR) is pivotal for fast 
and efficient development of drug candi-
dates. By using a variety of computational 
techniques qualitative or quantitative SAR 
(QSAR) models can be derived that allow 
either the classification of compounds as 
active or inactive (classification) or the pre-
diction of binding activities of compounds 
quantitatively (regression). In all cases, the 
first step is to describe the chemical structure 
with a set of numbers, so-called descriptors. 
Since the early work of Hansch and Fujita 
[1] a large number of different descriptors 
were developed for QSAR model genera-
tion [2]. Fundamentally, these descriptors 
can be distinguished by the dimensionality 
of the structural representation. For a long 
time, mainly 2D structure representations 
were used to derive numerical descriptors. 
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veloped for lead optimisation datasets and 
are particularly useful for identifying bio-
isosteric replacements and combinatorial 
library design [16].

In summary, 2D-QSAR approaches can 
successfully be applied in all stages of the 
drug development process. The speed in 
which they can be calculated makes them 
especially suitable for handling large data-
sets. 2D-QSAR methods are also attractive 
approaches for iterative, automatic genera-
tion of QSAR models during lead optimisa-
tion.

Indirect Drug Design

Indirect methods for drug design are 
used when there are no high-quality struc-
tures of the target from which a structure-
based drug design effort can be launched. 
Such methods can also be used in combi-
nation with homology models to provide 
supporting evidence for the model. This is 
particularly useful for targets where the X-
ray structure is of low resolution, or there 
is very low homology to known structures. 
Indirect methods start with the structures 
of small molecules and their activity at a 
target, and then attempt to deduce informa-
tion about the bioactive conformation and 
binding mode of the active compounds. 
The principal methods, pharmacophore 
analysis and 3D-QSAR, work best if the 
activity data is taken from a binding assay 
rather than an ex vivo or in vivo assay, to 
reduce the influence of bioavailability ef-
fects. It is also assumed in the first instance 
that the molecules have a single common 
binding mode. This is however a ques-
tionable assumption in many cases, but in 
absence of any contrary evidence, it is the 
starting point.

A pharmacophore is a model defined by 
the features of a molecule (hydrogen bond-
ing groups, hydrophobic regions, charged 
groups or aromatic ring centres) thought to 
be essential for biological activity and by the 
geometric relationships of the features, for 
instance the distances between them. From 
these features, a 3D pharmacophore model 
for bioactivity can be proposed. These mod-
els are then used to score novel compounds 
before synthesis or to search corporate da-
tabases for structurally novel active chemo-
types [17]. The first stage of the process is 
to sample the low-energy conformations of 
all the molecules, followed by an analysis 
of the pharmacophores present in the active 
molecules but not in the inactive ones. The 
key difficulties are to ensure that the bioac-
tive conformation is sampled, and that the 
features encode the right information (for 
example that carboxylate, hydroxamate 
and tetrazole groups are recognised as bio-
isosteres. The strengths and weaknesses of 
commercial programs for pharmacophore 

analysis have been examined by Patel and 
coworkers [18].

3D-QSAR methods try to build a sta-
tistical model which describes the biologi-
cal activity as a function of the steric and 
electrostatic fields around the molecules, 
simulating potential receptor interactions 
[19]. The model may be used for activity 
prediction and the design of novel, more 
potent molecules during lead optimisation. 
Visualisation of the results, in terms of fa-
vourable and unfavourable regions around 
the molecules, greatly facilitates the design 
of new structures. The key to the success 
of the method is to have a good way to su-
perimpose the molecules [20]. A good ex-
ample of the application of the method to 
a relevant target is in the work of Cavalli 
and coworkers [21], looking at the require-
ments of hERG binding. Pharmacophore 
and 3D-QSAR models are used routinely 
as in silico screens by chemists, to help set 
synthetic priorities, and to assist chemists to 
design better compounds.

Structure-based Drug Design 
(SBDD)

Structure-based drug design, as drug 
discovery in general, is not a linear, stand-
alone, single shot procedure, but an itera-
tive and integrated approach, which follows 
– in close collaboration with all the differ-
ent disciplines involved – a circular process 
of improving all parameters describing a 
final drug. In this respect, earlier structure-
based ligand design has matured towards 
an approach which became an integral part 
of most industrial drug discovery projects 
where structural information of the target 
is available or deducible from related tar-
gets. Development, growth and apprecia-
tion of SBDD are firmly linked to the rapid 
progress in protein crystallography during 
the last 20 years. Starting with the revolu-
tionary ideas for understanding protein–lig-
and interactions [22] and the first success 
stories of SBDD in HIV protease taking 
advantage of multiple co-crystal struc-
tures, this situation has become a standard 
scenario for many projects. In addition to 
structural biology, the explosion in compu-
ter power and graphics capabilities should 
not be underestimated as factors leading to 
the current success.

A target with a reasonably well-defined 
binding pocket, i.e. possibly no surface in-
teraction or unspecific binding, combined 
with high-resolution structural information, 
is the favourable starting point, if not the 
prerequisite, for SBDD. A thorough analy-
sis and characterisation of this binding site 
– by graphical visualisation and using ap-
propriate software (e.g. for calculating and 
storing molecular fields as grids) – is a first 
crucial step at the beginning of a project. 

Knowledge of 3D requirements, functional 
groups possibly involved in interactions 
and a physicochemical description of the 
binding site are the keys to the second step: 
to optimise the complementarity between 
a putative ligand and its binding site by 
making use of insight into the forces which 
make a small molecule fit at the active site 
(favourable interaction geometries and 
chemical principles), and accordingly by 
designing molecules which match the re-
quirements of their binding site [23].

A plethora of methods and strategies 
can contribute here depending on the cur-
rent level of knowledge. Visual inspection 
and modeller’s and chemist’s intuition, i.e. 
the human brain, creativity and experience 
(of course supported by steadily improving 
means to analyse situation and needs) is still 
of utmost importance. Conformational pref-
erences or patterns of non-bonded interac-
tions might still be better judged by a mod-
eller than a simplified calculation. Virtual 
screening, especially for small fragments 
or building blocks fitting a well defined 
pocket, the design of focused libraries, or 
de novo methods can be part of the SBDD 
approach. In order to apply these methods 
most efficiently, the limited knowledge at 
the start of a program is expanded progres-
sively. Major limitations such as protein 
flexibility and the effect of solvent are be-
yond high-throughput methods (and chal-
lenges for every approach) and have to be 
borne in mind. Starting from different lev-
els of approximations, and cycle by cycle, 
more details can be included.

At the same time synthetic accessibil-
ity and the potential for modifications that 
lead to drug-like properties are taken into 
account. The inability to include such cri-
teria is a major drawback of most de novo 
design programs. 

Structure-based methods are applied in 
all phases of a project. Whilst one has to be 
lucky to identify a good hit as starting point 
from the screening of in-house databases, a 
co-crystal structure of the target with a sub-
strate, cofactor, known lead etc. is a solid 
starting point. Based on such an entry point, 
fragments that match particular parts of the 
identified binding site can be searched for. 
New scaffolds are explored, which repre-
sent characteristic 3D or physicochemical 
features and are open to wider chemical 
variation. The identification and optimisa-
tion of a declared lead is always guided by 
the firm knowledge gained from the bind-
ing site analysis.

In the field of oncology research at No-
vartis – to take an example – SBDD was 
successful at different stages of medicinal 
chemistry projects. Virtual screening of a 
subset of the corporate compound collec-
tion in a homology model of human CK2 
protein kinase – combined with filtering 
based on known pharmacophore informa-
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tion – identified a potent lead among only a 
dozen compounds selected for testing [24]. 
The design of a new lead series for CDK2 
inhibition exemplifies how target family 
information can be utilised for the design 
of specificity [25]. The work on inhibitors 
of the chymotrypsin-like activity of the 
20S proteasome shows a structure-based 
optimisation of a high-throughput screen-
ing hit [26].

The first example shows that the lines 
between SBDD and HTD are flexible. De-
pending on the level of input from exist-
ing knowledge, HTD can be just one more 
method in SBDD making use of the addi-
tional throughput of ideas. But on the other 
hand, HTD can also be a very basic screen-
ing tool, focusing on speed and throughput, 
as opposed to SBDD’s focus on accuracy 
or on guidance from the scientist’s knowl-
edge.

HTD and Scoring

HTD (High-throughput docking), where 
candidate ligand molecules are docked in 
silico into a 3D molecular structure model 
of the target protein to generate physical-
ly reasonable models of the ligand–target 
complex and to assess their binding poten-
tial [27], is today successfully integrated in 
various scenarios of the target-based lead 
finding process [28]. An impressive number 
of success stories have been reported for 
lead finding applications with typical ex-
perimental validation hit rates of 1–10% for 
various target families providing specific 
micromolar compounds [29]. 

With the progress within the field of 
structural biology, HTD approaches hold an 
enormous potential for the early drug dis-
covery process. These expectations and the 
availability of cheap computing hardware, 
including Linux clusters and more recently 
GRID computing platforms [24][30], moti-
vated in the last decade the development of 
around 20 docking software packages (e.g. 
DOCK, Autodock, Gold, FlexX, Glide, 
ICM, Ligfit) [27][31]. 

The HTD algorithms are either based 
on incremental build-up procedures and/or 
systematic or random sampling techniques 
to generate coordinates or poses – candi-
date models – of the ligand 3D conforma-
tion and molecular interactions within the 
target binding site. This geometric probing 
samples, ideally, the entire conformational 
space of the fully flexible candidate ligand 
by variations of the dihedral angles and by 
all possible placements and orientations of 
the entire molecule, a combinatorial com-
plex problem. The existing algorithms are 
fast and robust within the rigid or limited 
side-chain flexibility receptor approxima-
tion and some of the guided docking meth-
ods allow the inclusion of constraints in 

form of desired pharmacophore contacts 
(e.g. GOLD) [32]. Conversely, the compu-
tational assessment of the binding potential 
is a very challenging scientific problem 
[26][31][33]. In theory, the computed bind-
ing energy should correspond to the experi-
mental binding energy and the predicted 
pose should correspond to the experimen-
tal 3D structure of the ligand–receptor com-
plex. While in general, the docking methods 
are surprisingly efficient to predict accurate 
binding poses for high-affinity drug-like 
small molecular ligands when the used 3D 
model of the receptor is of relevance, ac-
curate computational prediction of absolute 
binding energies still do not exist [31][33]. 

The final selection of compounds must 
rely on approximate scoring techniques 
and careful visual inspection by a compu-
tational and medicinal chemist to integrate 
complex non-computer amenable expertise. 
Among the diverse scoring methods, basi-
cally three categories can be distinguished. 
Molecular mechanics force-field based 
scoring functions (e.g. G-Score, D-Score, 
Gold, DOCK, AutoDock) include explicit 
Lennard-Jones and Coulomb terms to com-
pute, respectively, the van der Waals and 
electrostatic terms of the binding energy 
and take into account the conformational 
strain energy. Empirical scoring functions 
(e.g. LUDI, F-Score, ChemScore) describe 
the binding energy as a sum of empirically 
based parameters for specific interaction 
contacts (e.g. hydrophobic contact, hydro-
gen-bond, etc.) derived from regression 
analysis for the binding energy and/or the 
binding poses of selected reference sets 
of receptor-ligand complexes with known 
experimental 3D structures and binding 
energies. Finally, knowledge-based scoring 
functions (e.g. PMF, DrugScore, SMoG) 
are based on categories of simple atom pair 
contact parameters and were derived to re-
produce binding poses. All of these scor-
ing functions have significant imperfec-
tions and depending on the nature of target 
family or the binding site, characterised 
by the shape and polarity, the one or other 
method might perform better than another 
one [26][31][33][34]. Most essentially, the 
quality allows the distinction of active and 
inactive molecules and a number of compu-
tational protocols are currently developed 
to boost the enrichment. As for instance, it 
is a priori not clear which scoring function 
is the most appropriate for a newly inves-
tigated target, consensus scoring functions 
(e.g. X-CSCORE, C-Score) combining the 
output of individual scores or ranks can be 
used and were sometimes shown to perform 
better than any single score alone [33][34]. 
More recently, the application of multivari-
ate analysis and machine learning methods 
were shown to be useful [35]. For instance, 
the application of the naive Bayes classifier 
method after consensus scoring was shown 

capable to provide further enrichment 
[17]. Other knowledge-based approaches 
emerge which apply ligand specific trans-
ferable multiple active site correction terms 
derived from docking the candidate ligands 
on multiple targets in parallel [36]. 

There are several limitations on the 
physically-based binding energy [37–39]. 
First, it is that ligand binding is a much 
more complex phenomenon than the rigid 
key and lock mechanism. It is a dynamic 
process, including structural reorganisation 
of the ligand, the protein and the hydrating 
water environment [40], which is better de-
scribed as a transient binding site occupa-
tion. In the bound state the ligand executes 
restricted back and forward motions. Hence, 
not all specific atom contacts defining the 
binding interactions exist persistently and 
providing a rationale why straight forward 
summing-up of the interactions terms might 
be an imperfect methodology [37]. In addi-
tion, effects linked to spatial confinement 
in the binding site could require quantum 
theory based methods [38]. Ligand bind-
ing integrates cooperative and frustrating 
compensatory effects of multiple weak in-
teractions which result in the observed time 
averaged total binding energy [38][39]. 
To achieve further progress with the first 
principle methods, future developments 
will probably include molecular dynamics 
simulations in explicit water and refined 
force field parameters as recently shown by 
the case study of the progesterone receptor 
[41]. 

Web-based Cheminformatics Tools 

Computational methods are becom-
ing increasingly part of the workflow of 
modern medicinal chemists. Typical tasks 
involved in this process include fast calcu-
lation of molecular properties and ADMET 
characteristics for large data sets, analysis 
of molecular diversity or design of targeted 
combinatorial libraries. Although these 
tasks are traditionally a domain of expert 
molecular modellers, bench chemists are 
increasingly interested in performing these 
analyses themselves. At Novartis we are 
supporting this effort by providing a collec-
tion of cheminformatics tools for medicinal 
chemists available on their desktops through 
an easy-to-use web-based interface.

Tools based on the web technology are 
indeed ideal for interactive processing of 
chemical information. Such systems pro-
vide easy access to relevant data, allow 
visualisation, processing and analysis of the 
data and development of models which help 
users to understand complex relationships 
within the data. The web tools support me-
dicinal chemists in their daily tasks, as well 
as more specialised activities, such as the 
design of targeted combinatorial libraries, 
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bioisosteric design or virtual screening. 
Ciba-Geigy (which merged in 1996 

with Sandoz to form Novartis) was one of 
the first large pharmaceutical companies to 
recognise the advantages of web technol-
ogy for processing molecular information. 
By 1995 its chemists were already able to 
use a web-based cheminformatics system 
through the company intranet [42–44]. The 
Novartis web-based cheminformatics sys-
tem has been continually updated and cur-
rently consists of more than 20 modules, 
supporting a broad range of various chem-
informatics and molecular processing tasks 
including:
•  calculation of molecular properties and 

drug transport characteristics;
•  sophisticated toxicology alerting; 
•  molecular visualisation, including visu-

alisation of surface molecular proper-
ties;

•  support for diversity analysis and enu-
meration of combinatorial libraries;

•  drug design based on bioisosteric prin-
ciple;

•  various helper tools (file format conver-
sion, molecule depiction, 2D to 3D con-
version, etc.).
The most popular tool on the Novartis 

intranet is a service for calculation of vari-
ous molecular properties called In silico 
Profiling (Fig.). It offers access to properties 
which may be calculated in a straightfor-
ward manner from the molecular connec-
tivity (SMILES string), are easily interpret-
able and provide good correlation with mo-
lecular bioavailability. Available properties 
include octanol–water partition coefficient 
logP, molar refractivity, flexibility index, 
hydrogen bonding characteristics and mo-
lecular polar surface area calculated ac-

cording to the protocol developed in-house 
[45]. Various drug transport characteristics, 
such as intestinal absorption, blood-brain-
barrier penetration or plasma-protein bind-
ing calculated based on in-house models 
are also provided. Novartis cheminformat-
ics web system features also a sophisticat-
ed toxicity alerting system – In silico Tox 
Check [46] using a database of nearly 200 
complex substructures which may cause 
toxicity, collected from literature or based 
on results of Novartis in-house toxicity test-
ing. The system allows toxicity alerting on 
about 20 endpoints, with main focus on car-
cinogenicity and mutagenicity. 

Novartis web-based molecular process-
ing tools installed on the corporate intranet 
bring easy-to-use cheminformatics and 
molecular modelling capabilities directly 
to the desks of synthetic chemists enabling 
them comfortable access to data and their 
visualisation and analysis, considerably im-
proving efficiency of the drug design and 
development process. 

In silico Drug Discovery Pipeline

As exemplified in the previous section, 
bench scientists have an ever increasing 
need for simple-to-use tools to conduct in 
silico calculations in drug discovery. Our 
vision is to further extend the portfolio of 
approaches offered through Web-based 
interfaces and thereby enable scientists to 
rapidly test their hypothesis before con-
tacting domain experts who would then 
focus on applying more advanced methods 
and spend more time to analysis specific 
project-related problems. In this context, 
we intend to further develop several Web-

based applications that can be chained in a 
pipeline to address the computational steps 
from target identification, protein model-
ling to high throughput docking and hit se-
lection. The basic concept of this vision is 
derived from previously implemented auto-
mated systems such as GeneQuiz [47] and 
SwissModel [48], both of which focus on a 
portion of the pipeline. These can be seen as 
proof of concept systems for our vision.

Detailed Atomistic Models of 
GPCRs

G Protein-coupled receptors (GPCRs) 
are the most prominent target family for 
pharmaceutical compounds. But with only 
one X-ray structure available so far (bovine 
rhodopsin [49]), detailed structural infor-
mation for GPCRs is sparse. Computer-
aided drug design for GPCRs has to rely 
either on QSARs (without a relation to the 
structure of the receptor) or on homology 
models based on the rhodopsin template 
(Building models ab initio based on recep-
tor primary structure alone is not feasible 
at this point). The quality of these models 
can be assessed experimentally. However, 
despite the fact they may explain a limited 
set of experimental findings, they must be 
considered with care. 

To study the interactions between 
GPCRs and low-molecular-weight com-
pounds, the most interesting part of GPCRs 
is the predominantly hydrophobic seven-
helices trans-membrane (7TM) region, in-
cluding in addition the (more polar) extra-
cellular loops when these are supposed to 
contribute significantly to interactions with 
ligands.

The standard way to generate homology 
models of the 7TM part of a GPCR is to 
• find its location in the primary sequence 

(e.g. by hydrophobicity plots); 
•  align the sequences of the seven individ-

ual helices to those in the X-ray struc-
ture of rhodopsin; 

•  substitute the side chains of rhodopsin 
with the respective ones of the GPCR 
under construction;

•  refine the crude model by techniques 
like energy refinement and molecular 
dynamics, mostly applying some con-
straints to preserve the overall helix ar-
rangement as in rhodopsin. 
Many pre-built models can be found at 

www.gpcr.org [50]. Procedures to generate 
and use GPCR models have been described 
throughout recent literature [51]. Vriend et. 
al. [52] list the problems encountered in 
building GPCR models, summarising the 
situation both before the publication of the 
rhodopsin crystal structure and afterwards.

In general, models are generated to ex-
plain or predict experimental findings. This 
is possible with GPCRs where for example Fig. Cheminformatics In Silico Profiling web service
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explicit 3D models may serve to guide mu-
tation studies, e.g. to determine the residues 
responsible for a specific function [53]. 
Models can also be used to dock ligands, 
giving hints on the complexation mode and 
on favourable modifications to drug candi-
date molecules [54]. In such cases, an it-
erative process leads to the refinement of 
the crude model which explains initial ex-
perimental data, suggests additional experi-
ments (point mutations and/or changes to 
the chemical structure of the ligands) which 
then require further adjustment of the mod-
el until experimental data and model are 
congruent. 

In summary, homology models of 
GPCRs are useful in drug design. Like ho-
mology models for other receptor classes, 
they yield a working hypothesis, which 
should be tested by experimentation.
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