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Abstract: Novel, highly potent CXCR4 inhibitors with good pharmacokinetic properties were obtained by apply-
ing PEM technology starting from the naturally occurring β-hairpin peptide polyphemusin II. The design involved
incorporation of key residues from polyphemusin II into a macrocyclic template-bound β-hairpin mimetic. Using a
parallel synthesis approach, the potency and ADME properties of the mimetics were optimized, resulting in CXCR4
inhibitors such as POL2438 and POL3026. Their activities were confirmed in a series of in vitro HIV-1 infection as-
says. Besides high selectivity for CXCR4, POL3026 had excellent plasma stability and favorable pharmacokinetic
properties in dogs. In a murine model POL3026 was highly efficacious in hematopoietic stem cell mobilization.
Hence, PEM-based CXCR4 inhibitors have the potential to become therapeutic agents for the treatment of HIV
infections (as entry inhibitor), cancer (e.g. for inhibition of metastasis), stem cell transplant and inflammation.
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1).[1] In particular, the β-hairpin motif is a
key structural element involved in many
protein–protein interactions of therapeutic
relevance.[2] Therefore, PEM molecules lie
at the interface of small molecules and bio-

pharmaceuticals, and combine several ad-
vantages of both established drug classes.
Structurally they can be best compared to
natural product drugs such as cyclosporin,
vancomycin or daptomycin.[3]

*Correspondence: Dr. D. Obrechta

Tel.: + 41 61 486 98 98
Fax: + 41 61 486 98 59
E-Mail: daniel.obrecht@polyphor.com
aPolyphor AG, CH-4123 Allschwil
bInPheno AG, CH-4051 Basel
cInstitute of Organic Chemistry, University of Zurich,
Winterthurerstrasse 190, CH-8057 Zurich
dPresent address: Harvard Medical School, Boston,
MA-02115, USA
ePresent address: Arpida AG, CH-4142 Münchenstein
fPresent address: Institute for Medical Microbiology,
CH-4003 Basel

Introduction

Today’s drug discovery efforts focus
mainly on two major drug classes: small
molecules and biopharmaceuticals. In col-
laboration with Prof. J. A. Robinson at the
University of Zurich, Polyphor has devel-
oped a new proprietary technology, known
as Protein Epitope Mimetics (PEM). PEM
molecules are medium-sized, cyclic pep-
tide-like molecules (1–2 kDa) that mimic
secondary structure motifs of proteins,
such as the β-hairpin and the α-helix (Fig.
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Fig. 1. The β-hairpin has been shown to be the predominant structural motif in known protein–protein
interactions. The left part of the Fig. shows the structure of a PEM molecule in detail.
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PEM Technology

PEM molecules consist of a β-hairpin-
shaped, cyclic peptide chain which is sta-
bilized by a β-turn inducing template. The
template induces and stabilizes the crucial
intramolecular H-bond network observed
in β-hairpins and facilitates cyclization
(Fig. 1). PEM molecules can be efficiently
synthesized by solid phase synthesis in a
96-parallel format. They offer many pos-
sibilities for structural variation in order to
modulate activity, selectivity and ADME
properties. In general, PEM molecules com-
prise 4 to 20 natural or non-natural amino
acids, however, building blocks like amino
acid isosteres can also be incorporated.
Besides the most convenient d-Pro-l-Pro-
template, several other structurally more
complex templates are at our disposal.[4]

PEM Design

The design of an initial PEM library
depends on the available target-related
structural information. The following ap-
proaches can be envisaged:
i) If only the sequence of the ligand is

known, a PEM sequence scanning ap-
proach can be taken.

ii) Key residues of the ligand and/or recep-
tor (identified e.g. by site-directed mu-
tagenesis studies), can be incorporated
into PEM design (conformational scan-
ning).

iii) As shown below, active sequences from
β-hairpin-shaped natural products and
phage display are a rich source of struc-
tural information for the design of PEM
libraries.[5]

iv) Finally, structural data from X-ray or
NMR of the ligand, preferably bound to
the receptor, can be an excellent starting
point for the design of PEM libraries.[6]

The Chemokine Receptor CXCR4

The chemokine receptor CXCR4 is a cell
surface receptor belonging to the G-protein
coupled receptor (GPCR) superfamily.[7] The
natural ligand of human CXCR4 is stromal-
derived factor alpha (SDF-1α) also known
as CXCL12. The CXCR4-SDF-1α axis is a
master regulator of chemotactic cell traffick-
ing in the human body[8] (Fig. 2) and plays a
major role in the retention of hematopoietic
stem cells in the bone marrow.[9] In addition,
it is known that CXCR4 is involved in me-
tastasis of various types of cancer cells to
organs overexpressing SDF-1α.[10] CXCR4
also acts as a co-receptor for the entry of T-
tropic HIV-1 into T-cells.[11] Another chemo-
kine receptor, CCR5, acts also as a co-recep-
tor for HIV-1, but only for the cellular entry
of M-tropic HIV-1 into macrophages.[12]

Therapeutic Applications of CXCR4
Inhibitors

As the CXCR4-SDF-1α axis is involved
in several important biological processes,
CXCR4 inhibitors have potential applica-
tions in serious diseases. The inhibition of
the SDF-1α induced chemotaxis results
in the mobilization of hematopoietic stem
cells from the bone marrow into the blood
stream. Currently, mobilized hematopoi-
etic stem cells are the preferred source for
autologous or allogeneic transplantation
in patients receiving high dose radio- or
chemotherapy. Another potential therapeu-
tic application for CXCR4 inhibitors is as
anti-metastatic agents for several types of
cancers, like breast cancer. It is well known
that many cancer cells express CXCR4 and
that their migration is directed by SDF-1α.

Hence, it can be anticipated that a CXCR4
inhibitor will lead to a reduction in metas-
tasis of cancer cells.

Finally, CXCR4 inhibitors could find
application as entry inhibitors in AIDS
therapy.

Design of CXCR4 Inhibitors

One of the first CXCR4 inhibitors de-
scribed was polyphemusin II, a naturally
occurring 18-amino acid peptide isolated
from the American horseshoe crab (Fig.
3).[13] A closely related synthetic analogue
described by Nakashima et al. is T22.[14]

Investigation of the solution structure by
Tamamura and Fujii[15] using NMR spec-
troscopy revealed that T22 adopts a β-hair-
pin conformation stabilized by two disul-

Fig. 2. SDF-1α is inducing direct positive chemotaxis. Hence, cells bearing CXCR4 direct their
movements to a higher concentration of SDF-1α.

Fig. 3. The natural product polyphemusin II and the synthetic analogue T22, both twofold disulfide-
bridged peptides, served as starting point for the design of PEM-based CXCR4 inhibitors.
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fide bonds. This architecture represented
an ideal starting point for the design of
CXCR4 inhibitors using PEM Technology.
First, we translated the sequence of T22
into a PEM molecule. After several rounds
of optimization, a first lead family was ob-
tained showing significantly improved ac-
tivities and ADME properties, exemplified
by POL2438 and POL3026.

Results and Discussion

Fig. 4 shows the results of two differ-
ent in vitro assays. The Ca2+ flux assay is a
common functional assay for testing GPCR
inhibitors. Both Polyphor compounds show
IC50 values in the low nM range, tenfold
more potent than TC14011, a truncated
synthetic analogue of T22. To our knowl-
edge POL3026 constitutes the most active
CXCR4 inhibitor described to date.

In addition, the inhibition of chemotax-
is of CEM cells carrying CXCR4 was as-
sessed. A very low IMC50 of 1.2 nM could
be observed. Fig. 4 also summarizes some
in vitro ADME data. The striking increase in
plasma stability of POL2438 and POL3026
compared to TC14011 highlights the im-
portance of the cyclic PEM structure for
improving both activity and ADME prop-
erties. In addition, we did not observe sig-
nificant metabolism of the compounds by
liver enzymes. Encouraged by these prom-
ising in vitro ADME data, POL3026 was
selected for pharmacokinetic profiling in
three male beagle dogs. After subcutaneous
administration at a dose level of 1.5 mg/kg
body weight the maximal serum concentra-
tion was reached 1 h after dosing. Then the
plasma level decreased with an elimination
half-life of 3.4 h. Thus, POL3026 exhibits
a good pharmacokinetic profile and small-
molecule-like ADME properties.

The high inhibitory activity was further
confirmed in several anti-HIV-tests, among
them the deCIPhR assay (Fig. 5). DeCIPhR
is a virus replication assay, which can be
used to assess entry of different recom-
binant viruses and derived mutants into
CEM-cells.[16] In this assay POL2438 was
both highly active and selective in inhibi-
tion of T-tropic virus entry. All members of
the ‘non-sensitive’ population were belong-
ing to M-tropic CCR5-using virus strains.
This result is in line with the high selectiv-
ity of our compounds for CXCR4, and the
lack of activity against all other chemokine
receptors that we have tested.

Finally, we explored the ability of PEM-
based CXCR4 inhibitors to mobilize stem
cells in mice. The results of this in vivo ef-
ficacy study are shown in Fig. 6. Compared
to a well-known CXCR4 inhibitor, one of
our most advanced PEM molecules showed
a significantly improved efficacy in releas-
ing functional stem cells.

These encouraging in vitro and in vivo
results underscore the high potential of
PEM-based CXCR4 inhibitors as novel
therapeutics in stem cell mobilization, can-
cer and HIV.

Experimental

The experimental procedure for the syn-
thesis of our PEM molecules as well as the
protocols of the in vitro and in vivo assays
have already been reported,[5] except for the

in vivo efficacy study of stem cell mobiliza-
tion which will be published elsewhere.
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TC 14011, POL2438 and POL3026 as well as selected ADME properties
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Fig. 6. In vivo proof of concept in the area of stem cell mobilization. The increase in stem cells
measured as Colony Forming Units (CFU) of Granulocyte-monocyte progenitors (GM) is depicted
as a function of time.
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