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Abstract: Marcus theory of electron transfer is the quintessential example of a successful theory in physical chem-
istry. In this paper, we describe the theoretical approach we have adopted to compute key parameters in Marcus
theory. In our method, based on molecular dynamics simulations and density functional theory, the redox center
and its environment are treated at the same level of theory. Such a detailed atomistic model describes specific
solvent–solute interactions, such as hydrogen bonding, explicitly. The quantum chemical nature of our computa-
tions enables us to study the effect of chemical modifications of the redox centers and deals accurately with the
electronic polarization of the environment. Based on results of previous work, we will illustrate that quantitative
agreement with experiment can be obtained for differences in redox potentials and solvent reorganization energies
for systems ranging from small organic compounds to proteins in solution.
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atomistic models using density functional
Theory (DFT). The quantum chemical na-
ture of DFT allows the effects of chemical
modifications of the redox centers to be
studied without a need for prior knowledge
or empirical parameterization. This can
thus make our method truly predictive.

A key feature of ET reactions, or re-
dox reactions in general, is the crucial role
played by the environment. Indeed, oxi-
dation (reduction) potentials are the con-
densed phase equivalents of ionization po-
tentials (electron affinities) in the gas phase,
and these quantities can differ significantly.
Our atomistic models explicitly include the
environment (e.g. solvent and/or protein)
so that not only dielectric properties but
also specific interactions, such as hydro-
gen bonding or conformational changes are
taken explicitly into account. Furthermore,
the environment is far from being a static
spectator. Its fluctuations bring donor and
acceptor sites in an energy resonant state,
triggering ET, and its ability to relax after
ET influences significantly the energetics.
In order to probe these fluctuations and re-
laxations in our computational setup, mo-
lecular dynamics is employed to generate a
sufficiently large number of representative
configurations of solute and solvent.

A major step in the understanding of
ET reactions was the formulation by Mar-
cus[16,17] of the rate of electron transfer (kET)

as a simple function of the reaction free
energy (ΔG), the solvent reorganization
energy (λ) and a proportionality constant
(κ) depending on the quantum coupling be-
tween donor and acceptor states.

The fruitful concept that underlies this
formula is the assumed harmonic nature
of the free energy surface with respect to
the reaction coordinate of electron transfer.
This restricts the validity of this formula to
the range of systems that fall in the linear
response regime, which might thus exclude
systems that undergo significant changes
in conformation or solvation upon elec-
tron transfer. Ultimately, the success of this
theory is based on its capability to predict
and explain experimental results. As will
be illustrated in Section 2, our and other
groups[18–22] have adopted the central con-
cept of this theory to simplify and guide
calculations.

So far we have focused on computing
two of the three central parameters in Mar-
cus theory: ΔG, the driving force of the ET
reaction, and λ, the solvent reorganization
energy. Anticipating our results in Section
3, we find good agreement with experiment
for systems ranging from small organic
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1. Introduction

Electron transfer (ET) reactions play a cru-
cial role in a number of processes of bio-
logical and technological importance. Well-
known examples include cell respiration,
photosynthesis, fuel cell catalysis and pho-
tovoltaics.[1,2] The efficiency of these pro-
cesses can be optimized by tuning the ET
properties of electron-donor and -acceptor
or the pathway between them. The relative
stability of the electron at these sites (i.e.
differences in redox potentials), and the
rate of electron transfer between them are
of particular interest, as they reflect directly
what is thermodynamically and kinetically
feasible. In this paper, we will summarize
some of our previous work[3–15] aimed at
computing these quantities directly from
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compounds to proteins in solution. Where-
as our DFT calculations typically involve a
few hundred atoms, the latter system was
modeled using a DFT description for over
2800 atoms.[15]

2. Atomistic Theory of Electron
Transfer

A central element of our approach to
ET so far, is the observation that ΔG and
λ can be obtained from standard electronic
ground state calculations, thus avoiding the
complexity of excited state calculations,
if one focuses on electrochemical half re-
actions. In this case, a single redox active
center is explicitly present in the simulation
cell, either in reduced or oxidized form.
Such a setup only makes sense if there is no
strong coupling between the donor and ac-
ceptor site, and is thus most easily applied
in the case of long-range electron transfer.
The free energy difference between the
reduced and oxidized redox state, which
we will denote by ΔA, to indicate that our
simulations are at constant volume, can be
computed in a number of ways. In the pre-
sent work, we derive expressions for ΔA
based on thermodynamic integration, i.e.
integrating the reversible work needed to
change the system’s Hamiltonian linearly
from the reduced [Hre({Ri})] to the oxi-
dized [Hox({Ri})] one. We write

where Hα is a Hamiltonian, formed as a
linear combination of the two physical
Hamiltonians Hox and Hre. Its derivate with
respect to α is the vertical energy gap ΔE,
a central quantity in the following. The in-
tegrand <ΔE({Ri})>α is the canonical aver-
age of the vertical energy as obtained from
a sampling based on the Hamiltonian Hα,
for which we will introduce the short hand
notation ΔEα. The above expression for ΔA
is exact, and practical for actual ab initio
calculations.[11]

Nevertheless, let us assume that the sys-
tem is in the Marcus regime, or equivalently
in the linear response regime. In this case,
the integrand ΔEα varies linearly between
the integration limits α = 0 and α = 1, and
a number of simple expressions for ΔA can
be derived. We illustrate in the Fig. that the
assumption of linearity can be valid with
remarkable accuracy, but see e.g. ref.[11] for
a counterexample. Three expressions that
are exact in the linear regime, and that have
been used in our previous work are:

where the first expression is a two-point es-
timate of the integral, and the latter two ex-
pressions are obtained from integrating the
surface under a straight line through either
the initial or the final point, with a slope
given by the first derivative of the integrand
in that point:

The latter expression shows that the
slope of the integrand is proportional to the
variance (fluctuations) of the vertical energy.
The assumed linear behavior of ΔEα implies
that the first derivative is constant, and that
all higher derivatives vanish. While this
leads trivially to the property that σ0

2 equals
σ1

2, it is a lengthier derivation, beyond the
scope of this paper, to show that this leads
to a Gaussian probability distribution of ΔE.
The corresponding free energy profile, given
by –kT times the logarithm of this probabil-
ity distribution, is parabolic, and the solvent
reorganization energy (λ) can directly be as-
sociated with the fluctuations as

where the last equality is obtained by sub-
tracting the last two equations for ΔA.

In the remainder of this paper, we will
use the above equations in a simple three-
step recipe to compute ΔA and λ:

i) Generate an ensemble of atomistic con-
figurations by running molecular dy-
namics simulations in the reduced (α =
0) and/or the oxidized state (α = 1).

ii) For each of these configurations, com-
pute the vertical energy (ΔE) as the dif-
ference in total energy between the oxi-
dized and the reduced state.

iii) Compute the average (ΔEα) and vari-
ance (σα

2) of the set of values of ΔE to
obtain ΔA and λ.
Additionally, based on careful consider-

ations of the system’s complexity, we will
choose which formula for ΔA and λ. we em-
ploy, and how we generate the ensemble.
For example, the expressions depending on
the variance of ΔE converge significantly
slower than those depending only on the
average of ΔE, but have nevertheless the
advantage that they can be evaluated with
just one simulation in an oxidation state of
choice. The expression based on the aver-
age of the vertical energy at both end points
is likely to be more reliable if some devia-
tion from linearity is to be expected.

Finally, we conclude this section with a
brief discussion of our computational setup,
referring to ref.[23] for a complete techni-
cal review of the method, and refs.[10,12,15]

for specific computational details for each
of the selected applications. The unifying
theme for the simulations that we have se-
lected for this paper is that all DFT calcula-
tions have been performed using the freely
available simulation package CP2K/Quick-
step.[23,24] Based on the hybrid Gaussians
and plane waves (GPW) scheme,[25] excel-
lent efficiency and accuracy is obtained for
systems containing up to a few thousand
atoms.[26,15] The efficiency is obtained by
exploiting the locality and compactness of
a Gaussian basis, and the linear scaling cost
of evaluating the Coulomb (Hartree) energy
in a plane wave basis. Furthermore, Born-
Oppenheimer molecular dynamics simula-
tions can be performed using a robust wave-
function optimization technique[26] and a
density matrix extrapolation scheme.[23]
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Fig. Computed values
of the integrand ΔEα for
a classical model of the
Fe2+/Fe3+ redox pair in
aqueous solution are
shown with error bars
indicating the statistical
uncertainty. The line
represents a linear fit to
the data. The high quality
of this fit convincingly
demonstrates, for this
system, the validity
of a key assumption
underlying Marcus
theory and our
computational approach.



LAUREATES: AWARDS AND HONORS, SCS FALL MEETING 2006 157
CHIMIA 2007, 61, No. 4

The value of this approach can be best ap-
preciated for ‘electronically difficult’ sys-
tems such as radicals and transition metal
compounds, typically encountered in ET
systems, where these methods bring en-
hanced stability.

Nevertheless, these simulations remain
challenging and a number of issues that
might affect their accuracy have been dis-
cussed in more detail in ref.[14] Errors arise
from the approximate nature of DFT and
from the limited length and timescales that
can be assessed by ab initio techniques.
The most serious DFT error is likely to
come from the self-interaction error, de-
spite the fact that our half-cell approach
avoids the difficulties associated with a
computational setup where both donor and
acceptor are present in the same simula-
tion cell. The latter setup can lead to an
unphysical delocalization of the electron
and requires proper treatment. However,
even with the half cell approach, the self-
interaction error is a major concern for
systems containing an unpaired electron
in an electronic state that is (nearly) de-
generate with the band of occupied solvent
state. In this case, an unphysical delocal-
ization of the spin over the solvent might
be observed.[27] System size effects can
be expected for quantities, such as λ, that
are sensitive to the long-range nature of
the electrostatics, since charged solutes
are treated in relatively small simulation
cells. However, when investigating differ-
ences between systems that have a similar
spatial distribution of the charge, the same
unit cell, and a similar environment, these
errors are expected to cancel. Finally, in
assuming a linear response regime for our
calculations, we have introduced a system-
atic error. This is error must be balanced
to the statistical uncertainty in the results,
since only a relatively small number of
configurations (100–1000 s) can be com-
puted using methods based on DFT.

3. Results and Discussion

In the following, we present three ap-
plications that have been used to explore
the capabilities and limits of our meth-
odology within the framework of CP2K.
These are:
i) the organosulphur compounds tet-

rathiafulvalenene (TTF) and thian-
threne (TH) in acetonitrile (ACN) so-
lution,[10]

ii) model quinones, benzoquinone (BQ)
and duroquinone (DQ) in two dif-
ferent solvents, ACN and methanol
(MeOH),[12]

iii) two natural varieties of the iron–sulfur
protein rubredoxin in aqueous solu-
tion.[15]

Three variants of the same three-step

recipe have been employed. For the or-
ganosulphur compounds, we have em-
ployed ab initio molecular dynamics sim-
ulations to generate the configurations,
leading to parameter-free estimates of the
reaction free energies shown in the Table,
which agree with experiment to within our
estimated statistical uncertainty (60 meV).
For the other two applications, configura-
tions have been generated using classical
molecular dynamics, and DFT has only
been employed to compute the vertical
energies. These results are thus not truly
parameter-free, since a classical force field
must be available to describe the geome-
tries. However, this approach allows much
longer timescales to be explored, and both
systems have been simulated for several
nanoseconds, retaining a few hundred to
thousands of configurations for DFT-based
analysis. The simulations of the quinones
exhibit similar agreement with experiment
for the reaction free energies (hence vali-
dating our mixed classical/quantum ap-
proach), but more interestingly allow the
effect of hydrogen bonding on the solvent
reorganization free energy to be illustrated,
and hence the rate of electron transfer. In-
deed, we have selected two solvents (ACN
and MeOH) with very similar dielectric
properties. In particular, their Pekar fac-
tors, which in a continuum description are
proportional to the solvent reorganization
energy, differ only by about 5%. However,
we find that the solvent reorganization en-
ergies of both solutes are larger by approx-
imately 230 meV in the hydrogen bonding
solvent, consistent with experiment.[28]

This illustrates the limits of a continuum
theory approach, which predicts a much
smaller difference. Our third application
is also based on classical sampling with
DFT calculations of the vertical energies,
but applies this technique to a significantly
larger system, the mesophilic Clostridium
pasteurianum (Cp) and the hyperthermo-
philic Pyrococcus furiosus (Pf) variants of
the iron–sulphur protein rubredoxin. We
consider it a significant break-through that

we are now able to obtain redox potentials
differences in agreement with experiment
(see the Table) for a system of this size
(2800 atoms). Furthermore, we also obtain
solvent reorganization energies (0.5–0.7
eV) that are in good agreement with the
estimates employed in kinetic models of
the self-exchange reaction.[29] This is sig-
nificant, since simulations based on stan-
dard force fields yield results that are much
larger. This overestimate is consistent with
the continuum dielectric expression of the
solvent reorganization energy, and under-
lines the importance of the high frequency
dielectric response. The latter term is ab-
sent in non-polarizable force fields, but
included in our DFT description.

Finally, we note that atomistic and
electronic information is available in these
simulations as well. For example, the re-
sponse of the solvent to the ionization of
the solute can be analyzed,[10] the contri-
bution of particular residues to the solvent
reorganization energy estimated,[15,30]

or the correlation between one-electron
energies levels and redox potentials ob-
tained.[14] In this paper, we focused on the
computation of key parameters in Marcus
theory and compared these results with
experiment where available. The results
presented here are a good indication that
the method is quantitative and predictive,
and that our approach can thus be applied
in cases where experiments might be dif-
ficult or more approximate theories inap-
propriate.
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