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Pharmacophore-Based Screening
for the Successful Identification of
Bio-Active Natural Products
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Abstract: We report on the impact of pharmacophore-based virtual screening in the field of drug discovery from
natural products. Confronted by an increasing number of secondary metabolites and an increasing number of bio-
molecular targets relevant in the therapy of human disorders, there is clearly the need for efficient data manage-
ment. Filtering of compounds by virtual screening experiments already showed great effect when dealing with large
libraries of potential bioactive molecules. Feature-based 3D pharmacophores have been successfully utilized for
database mining in order to retrieve potentially bio-active molecules. However, for the discovery of natural lead can-
didates, the application of such in silico tools has been so far almost neglected. There seems to be several reasons
for this. One concerns the scarce availability of natural product (NP) 3D databases in contrast to synthetic/combi-
natorial compound libraries; another reason might be the problematic compatibility of NPs with modern robotized
high-throughput-screening (HTS) technologies. Additionally, the incalculable availability of pure natural compounds
and their often too complex chemistry is claimed to hamper such an approach. Thus, research in this field appears
time-consuming, highly complex, expensive, and ineffective. Nevertheless, naturally derived compounds are still
among the most favorable sources of new drug candidates. A more rational and economic search for new lead
structures originating from nature must therefore be a priority in order to overcome these problems.
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Introduction

In modern drug discovery we are confront-
ed by a paradoxical situation: Advanced
technological and molecular know-how,
e.g. in the area of genomics, combinato-
rial chemistry, high-throughput-screening
(HTS), robotized and miniaturized process
cycles were introduced as highly efficient
tools in pharmaceutical industry. These
costly procedures were expected to raise the
number of launched drug substances; how-
ever the results have been disappointing and
pharma still faces major challenges.[1] De-
spite increasing research and development
expenses of the leading pharma companies
the number of new drugs on the market has
fallen steadily in recent years.[2]

On the other side we are faced by a high
traditional impact of naturally derived medi-
cines and incredible success stories of natu-
ral products (NPs) as potent remedies from
the beginnings of human therapeutic activity
to modern research and drug development.
Nevertheless, most of the large pharmaceu-
tical companies scaled down or terminated
their work in NPs operations. The reason
behind this phenomenon is principally that
the drug discovery process starting from

natural sources is hardly compatible with
the today’s highly automatized drug discov-
ery technologies. Thus, the pre-eminence
of combinatorial chemistry as the preferred
method for generating new drug leads has
led to the comparative neglect of this valu-
able resource. In a recent updated review[3]

of an older study,[4] Newman and Cragg
summarize the role of natural products as
sources of new drugs over the last 25 years
concluding that, from 1010 new chemical
entities (NCE) investigated, 43 (4.25%) stem
directly from natural products, 232 (22.97%)
are direct derivatives from NPs, and another
108 (10.69%) bear the pharmacophore of a
natural compound. The fact that in total al-
most 38% of NCE have some origins in NPs
unequivocally underlies the importance of
such compounds in modern drug discovery
and development. Strohl summarized the
difficulties of NP programs versus synthetic
chemicals.[5] These include
i) the existence of known potent antimi-

crobial and antiproliferative NPs and
the lack of sufficient dereplication pro-
grams which prevent their repeated dis-
covery;

ii) the fact that – in contrast to the highly
sophisticated molecular targets – NP
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extracts are generally regarded as too
‘dirty’, too difficult to assay, and too
time-consuming to work with;

iii) obtaining an assay hit resulting from a
bio-guided fractionation, the structure
of the NP still has to be elucidated com-
pared with synthetic chemicals;

iv) NPs are often deemed as too structurally
complex.
Strohl nevertheless concludes that ap-

plying an active NP program is an “expen-
sive endeavour” which, however, is “well
worth the cost”.

Status of NPs

To date some 200,000 natural com-
pounds[6–8] are published. The terrestrial
flora has been intensively investigated dur-
ing the last decades, the potential in finding
new NPs slumbering in untapped biota is
however nearly inconceivable. It is estimat-
ed that only 5 to 15% of the approximately
250,000 high plant species described have
ever been in the focus of phytochemical and
pharmacological investigations.[9] This per-
centage is even lower in the field of fungal
(less than 5%) and bacterial species (less
than 1%).[10] The most interesting fact in
this respect is that NPs contain an inher-
ently large-scale of structural diversity.
Thus, about 40% of the chemical scaffolds
of published NPs are unique and have not
been made by any chemist.[11]

Computational Approaches for the
Discovery of Lead Structures from
Nature

The increased understanding of funda-
mental principles of protein–ligand interac-
tions and the steadily growing number of
3D-structures of potential and experimen-
tally proven ligands provide excellent pos-
sibilities toward more rationalized concepts
in drug discovery. In the area of medicinal
chemistry, computational methods, like vir-
tual screening experiments, have already
proved to be successful approaches. They
are needed to exploit the available struc-
tural information, to understand specific
molecular recognition events, and to clarify
the function of the target macromolecule.
Although rationalized procedures in the
search for bioactive natural products are in
great demand to find the ‘needles in the hay-
stack’, computational assistance has barely
been used in natural product research.

The common idea of all computational
approaches within the early drug discov-
ery process is to mine more or less large
compound databases in silico and to select
a limited number of candidates proposed
to have the desired biological activity. For
this process the term ‘data mining’ was

coined.[12,13] The key goal of the use of such
methods is to reduce the overall cost associ-
ated with the discovery and development of
a new drug, by identifying the most promis-
ing candidates to focus experimental efforts
on. Recently published reviews and books
on the impact of computational chemistry
for lead structure determination highlight
such efforts.[14–20]

If the 3D structure of the biological tar-
get is known, high-throughput docking turns
out to be a valuable structure-based virtual
screening method.[21–23] Within this context,
the scoring of hits retrieved still remains a
question that is often discussed. In fact, the
major weakness of docking programs cur-
rently lies not in the docking algorithms
themselves but still in the inaccuracy of the
functions that are used to estimate the affin-
ity between ligand and target, the so-called
scoring functions.[24,25]

Since there is still a lack of comprehen-
sive NP 3D libraries, the number of virtual
screening studies published for the rational
access to bioactive NPs is limited. Some ex-
amples using docking as a structure-based
virtual screening tool include papers from
Liu and Zhou,[26] Toney et al.,[27] Cozza et
al.,[28] Zhao and Brinton,[29] and Liu et al.[30]

Compound databases containing ingredi-
ents used in traditional Chinese medicine
(TCM) have been used in several cases in
such applications.[30,31]

The Pharmacophore Concept in NP
Research

The pharmacophore concept has proven
to be extremely successful, not only in ra-
tionalizing structure–activity relationships,
but also by its large impact in developing
the appropriate 3D-tools for efficient virtual
screening.[32] The profiling of combinatorial
libraries and the classification of compound
series are other often-used applications of
this concept. Although well established
in combinatorial chemistry, it has to be
pointed out that the tools described in this
section have likewise a considerable impact
on the rational finding of new potential lead
compounds originating from the immense
source of secondary metabolites. The prior
use of pharmacophore models in biological
screening of NPs is an efficient procedure
since it eliminates quickly molecules that
do not possess the required features, thus
leading to a dramatic increase of enrich-
ment, when compared to a purely random
screening experiment. Doman et al. found
only 85 molecules or 0.021% active as
protein tyrosine phosphatase-1B inhibitors
(IC50 <100 µM) by a HTS of approximately
400,000 compounds.[33] On the other hand,
of 365 molecules suggested by molecular
docking, 127 or 34.8% were found to be ac-
tive. Thus, docking-based virtual screening

enriched the hit rate by almost 1700-fold
over random screening.

It has to be pointed out, however, that
additional molecular characteristics not re-
flected by pharmacophore models (physi-
co-chemical properties relevant for ADME
and toxicological properties) must be taken
into account when deciding upon which
compounds should be further developed.[34]

A rapid identification and elimination
of compounds with unsuitable physico-
chemical and pharmacokinetic properties
is a pivotal step in the early drug discovery
process.[35,36] This must be considered for
synthetics as well as NPs, though studies
revealed secondary metabolites not only
high scaffold diversity; biosynthesized
molecules also show structural and spatial
characteristics that are closer to drug leads
than those of synthetic molecules.[37,38]

Typically, NPs include more chiral centers
and their stereochemical architecture is
much more complex than that of synthetic
molecules. Furthermore, they usually con-
tain more carbon, hydrogen and oxygen
atoms, however, fewer nitrogen and other
atoms were present compared to synthetics.
NPs often show a molecular weight higher
than 500 Da combined with a high polar-
ity which is in clear contrast to Lipinski’s
‘Rule of Five’.[39] Nevertheless only about
10% of NPs contain two or more violations
of Lipinski’s rules.[38] Thus natural products
can be seen as containing highly diverse
scaffolds endowed with potential drugable
pharmacophores.

Structure-based Pharmacophore
Modeling

An inevitable prerequisite for generat-
ing a structure-based model is knowledge
about the ligand–target interaction[40] in-
cluding the availability of the 3D structure
of the target either by X-ray crystallography
or NMR or even constructed on the basis
of homologous proteins. A new software
tool (LigandScout) has recently been de-
scribed for the successful automated gen-
eration of chemical feature-based pharma-
cophore models starting from ligand–target
3D structures.[41] The performance of this
program allows the detection of relevant
interaction points between ligand and pro-
tein. The binding mode of the ligand in the
active site of a protein can be visualized in
a sophisticated way. In a study published
previously, this software was used for the
detection and interpretation of crucial in-
teraction patterns between ligands and the
factor Xa protein structure[42] (Fig. 1). In
a second step, the program Catalyst,[43] a
state of the art virtual screening platform,
was used for rapid virtual screening of mul-
ticonformational 3D structure databases in
order to retrieve selectively a 78% fraction



NATURAL PRODUCTS IN DRUG DISCOVERY 352
CHIMIA 2007, 61, No. 6

of the known factor Xa inhibitors within a
small subset of the large Derwent World
Drug Index library.[44] A further application
of the LigandScout pharmacophore defi-
nitions covers the rationalized search for
angiotensin converting enzyme (ACE)-2
inhibitors by virtual screening of approxi-
mately 3.8 million compounds from various
commercial databases.[45] Hit reduction and
selection was achieved using a five feature
hypothesis based on a recently resolved in-
hibitor-bound ACE2 crystal structure. Sev-
enteen virtual hits were selected for their
experimental validation in a bioassay; the
concept was confirmed since all of them
were revealed as ACE-2 inhibitors, all re-
presenting new chemotypes.

Barreca and co-authors developed a
3D structure-based pharmacophore model
with LigandScout for the discovery of new
scaffolds acting as HIV-1 non-nucleoside
reverse transcriptase inhibitors by virtual
screening of large chemical databases. Six
virtual hits were finally selected for deter-
mination of their inhibitory effects. Those
belonging to the new scaffold class of the
quinolin-2(1H)-one family exhibited re-
verse transcriptase inhibitory activity at
sub-micromolar concentrations.[46]

In a recently published work, Schus-
ter et al. described a so-called cytochrome
P450 profiler.[47] Several structure-based
and ligand-based pharmacophore models
for substrates and inhibitors of five cyto-
chrome P450 isoenzymes (1A2, P450 2C9,
P450 2C19, P450 2D6, and P450 3A4)
were created and validated by the authors.
Their results showed that the models were
suitable for fast pharmacokinetic profiling
of large drug-like databases.

In this context the parallel screening
approach is of particular interest. Whereas
in usual virtual screening cycles interac-
tions of thousands or even millions of 3D
database entries are browsed against one
pharmacophore model, in the case of paral-
lel screening, low-energetic conformers of
one structure are screened for their poten-
tial interactions against numerous models.
The basics of parallel screening have just
recently been presented by Steindl and co-
authors.[48–50] This in silico concept is of
particular interest to virtually scrutinize
drug candidates for their preliminary activ-
ity profiling relevant to putative side effects
and toxicity.[32] According to the obtained
interactions to virtually screened antitargets
(e.g. hERG, alpha, D2, D3, H1, I2, A2A,
A2B, cytochrome P 450, etc.) a first insight
to potentially risky affinities is provided be-
fore time- and cost-intensive toxicological
studies are performed.

The virtual screening approach using a
structure-based pharmacophore model has
revealed some first application examples in
NP research: Nikolovska-Coleska and co-
authors successfully pursued this in silico

strategy in the area of X-linked inhibitors
of apoptosis (XIAP).[51] A high-resolution
3D structure of the XIAP BIR3 domain
complexed with the N-terminal end of the
Smac/Diablo protein,[52] which is an en-
dogenous ligand of the respective XIAP
binding pocket, was used as the starting
point to virtually screen an in-house 3D-
NP database. In our group, we previously
focused on acetylcholinesterase (AChE);[53]

according to the cholinergic hypothesis of

the pathogenesis of Alzheimer’s disease,
inhibitors of the AChE are successfully
used as therapeutic strategy. Based on the
co-crystal structure of AChE with its ligand
galanthamine, a structure-based pharmaco-
phore model was generated and used for an
in silico screening of a multi-conformation-
al database consisting of more than 110,000
NPs. From the obtained hit list, promising,
virtually active candidates shown in Fig. 2
were selected, namely scopoletin (1) and its

Fig. 1. Chemical feature-based pharmacophore representation of a
ligand bound to its active site using the LigandScout visualization and
pharmacophore modeling platform (Ligand: RPR208815, Protein: Factor
Xa, PDB entry 1f0r)
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glucoside scopolin (2). Their AChE inhibi-
tory effect was first verified from the crude
extract of Scopolia carniolica roots using
a bioautographic TLC-assay. The isolated
coumarins showed a significant and dose-
dependent inhibition of the AChE in the
microplate enzyme assay as well as in the
in vivo test. The i.c.v. application of both
coumarins on rats resulted in a long-lasting,
pronounced and – in the case of the glu-
coside – even in a 2-fold higher increase
of the neurotransmitter’s concentration
than the one caused by the positive control
galanthamine.

Ligand-based Pharmacophore
Modeling

Very often, lead discovery projects have
reached already a well-advanced stage be-
fore detailed structural data on the protein
target has become available, even though it
is well recognized that modern methods of
molecular biology together with biophys-
ics and computational approaches enhance
the likelihood of successfully obtaining de-
tailed atomic structure information. A pos-
sible consequence is that often scientists
identify and develop novel compounds for
a target using preliminary structure–activ-
ity information, together with theoretical
models of interaction. Only responses that
are consistent with the working hypotheses
contribute to an evolution of the used mod-
els. Within this framework, the chemical
feature-based pharmacophore approach has
also proven to be successful[54] allowing the
perception and understanding of key inter-
actions between a receptor and a ligand on
a generalized level, starting from extensive
conformational analysis of active ligand
molecules and performing superposition-
ing experiments in order to find the com-
mon elements responsible for binding and
triggering a biological response (Fig. 3).
Such ligand-based pharmacophore models
together with large 3D structure databases
originating either from in house compound
collections, from commercial vendors, or
from natural products databases have prov-
en to be as useful as structure-based models
for in silico screening experiments. When
using ligand-based pharmacophore mod-
els as screening filters instead of protein
3D structures, affinity estimation is only
based on geometric fit of compound atoms
or groups to features of the model. In these
cases, the values calculated are often far
away from reality, however, still are useful
for filtering possible hits from non-binding
molecules. Additionally, in pharmacophore
fitting procedures, calculation demands are
considerably lower than in docking algo-
rithms allowing the number of compounds
to be processed in the same time to be by far
higher than even in high-throughput dock-

ing. Several reviews covering successful
applications of such feature-based methods
have been published by Kurogi et al.,[55] by
Langer and Krovat,[54] and by Güner et al.[56]

They outline the theoretical background and
describe several significant studies including
3D database search strategies.

In the field of NPs only a very limited
number of studies report from the rational-
ized access to bioactive compounds via
ligand-based virtual screening. For exam-
ple, this method was pursued for the dis-
covery of inhibitors of the COP9 signalo-
some (CNS) associated kinases CK2 and
PKD.[57] Using NPs curcumin and emodin
as lead structures, a virtual screening of an
in-house database was carried out. Among
the virtual hits seven NPs, e.g. anthraqui-
none (3) and piceatannol (4), were found to
significantly induce apoptosis by inhibition
of the CSN-associated kinases using in vi-
tro and cell culture experiments. A further
study has demonstrated the power of the
ligand-based approach applied to pharma-
cophore modeling of sigma-1 ligands.[58]

Therein, some reliable pharmacophore
models could be extracted solely from li-
gand structure information. Compounds
with potent affinities to the sigma-1 recep-
tor known from literature were structurally
aligned to derive distinct common features.
Their 3D arrangement in combination with
a spatial restriction was then used for the
generation of a pharmacophore model,
which was able to retrieve compounds with
high affinity values, among them also NPs,
like solanidine (5).

Conclusion

When analyzing our drug discovery ad-
venture starting from natural products we
are facing two facts:
i) statistics show that the myriad of struc-

turally diverse natural compounds are

the most favored source of new drugs
for clinical use;[3,4]

ii) the drug discovery process has moved
toward more rational concepts based
on the increasing understanding of the
molecular principles of protein–ligand
interactions.
Driven by economic interest, fundamen-

tal advances have been made in research ap-
plying data mining strategies, like pharma-
cophore-based in silico screening.

Though being aware of both potentials,
their combined benefit so far could only be
savored to a rudimentary extent. Only lim-
ited attempts applying innovative in silico
tools in NP research are pursued, mainly
because the search for bioactive compounds
is a complex and multi-disciplinary chal-
lenge. Thus, a sensible adaptation of com-
putational strategies is in demand to profit
in an economic way from the unique chemi-
cal and biological diversity associated with
NPs. Examples underlining the impact of
virtual screening on the identification of ac-
tive NPs have been presented in this survey.
Though the full potential in this field is by far
not tapped, these early results indicate that
the integrated virtual screening approaches
are target-oriented and trendsetting strate-
gies. However, as for any computer-based
technique, the successful use of virtual
screening will entirely depend on the way
it is utilized and the quality of its underly-
ing experimental data. It has to be stressed
that virtual screening techniques must not
be used exclusively as activity-predicting
tools, since the results provide merely an
indication for a putative activity: it is only
by the creation of interfaces between com-
putational tools and well-established meth-
ods from pharmacognosy that a reasonable
standard of success can be achieved.[59–61]

The search for the most effective strategy
is best performed by a drug discovery pro-
cess that involves the exploitation of all the
information which can be gathered from

Fig. 3: Concept for generating a ligand-based pharmacophore model using the Catalyst program: a)
selection of bio-active ligands; b) alignment of low-energetic conformers of the selected ligands; c)
derivation and determination of common pharmacophore features
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bioactivity-guided fractionation, on-line
analytical activity profiling, ethnopharma-
cological screening, chemoinformatics,
virtual and in vitro screening studies. In the
first instance it behoves the represents of
modern pharmacognosy to skillfully exploit
knowledge from all these fields because it is
of paramount importance to sift through the
enormous wealth of NPs.
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