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Abstract: The assembly, integration and functioning of various molecular components in complex systems is 
illustrated.
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The fascinating structures and complex 
functions present in biological systems of
fer a great source of inspiration to develop 
synthetic systems with functions control
lable at the molecular and supramolecular 
level.[1] However, building on the remark
able achievements in the synthesis of com
plex molecules, one immediately realises 
that structural complexity of individual 
molecules is often insufficient in the de
sign of new complex functions.[2] In our 
body molecules do not act in isolation but 
typically a large collection of ingenious 
multicomponent systems operate under 
kinetic control, usually in a mutually de
pendent way. Multiple integrated catalytic 
cycles, molecular information storage and 
retrieval, triggering and signal transduc
tion, repair mechanisms and molecular 
motors and machines are among the many 
features of biomolecular systems.[3] Chem
ical systems ultimately also require control 

over structure, organisation and function of 
multicomponent molecular assemblies at 
different hierarchical levels. It appears to 
be the right time to take up the challenge 
and enter the largely uncharted territory of 
molecular systems.

The design of chemical systems that 
allow the exploration of new functions or 
properties can be based on a combination 
of entirely synthetic molecules operating 
in concert. Alternatively, a biohybrid sys
tem can be designed, taking advantage of a 
structure from Nature by incorporating or 
coassembling synthetic functional units. 
An illustrative example of the latter ap
proach is a DNAbased asymmetric cata
lyst as presented in Fig. 1.[4] The supramo
lecular catalytic system comprises Cu (ii) 
bound to an achiral bipyridinetype ligand 
which upon intercalation to DNA acceler
ates C–C bond forming reactions, like the 

• excellent enantioselectivity
• achiral ligand
• in water

ee >99 % (>99:1)

MeNO2  ee 94% 
dimethylmalonate ee 99%

Diels Alder

Michael addition

kcat (M-1 s-1) :
(4.5 ± 1.5) x 10-2

3.8 ± 0.8

without DNA

with DNA

Fig. 1. DNA-based asymmetric catalysis.
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In a different approach, control of dy
namics and organisation at different hier
archical levels is achieved (Fig. 3).[7] The 
system is based on a single enan tiomer of 
a secondgeneration molecular motor that 
is used as an initiator for the polymerisa
tion of hexylisocyanate. In this case the 
helical switching function of a single mo
tor unit[8] is used to control, in a revers
ible manner, the preferred chirality of the 
dynamic helical polymer. This polymer 
forms a liquid crystalline (LC) film and 
by transmitting the change in chirality 
from the molecular via the macromolecu
lar to the mesoscopic level, the chirality 
and organization of the LC film can be 
controlled by light. Again the coopera
tive effect of several components in the 
molecular system allows the control of 
a set of specific functions and materials 
properties.

The control of dynamic properties by 
the concerted action of a number of com
ponents is perhaps most elegantly seen in 
an autonomous propulsion system based 
on the molecular design shown in Fig. 4.[9] 
The key element is a dinuclear manganese 
complex that was designed as a functional 
mimic of the active site of the catalase en
zyme. Via anchoring groups several cata
lyst moieties can be bound to a variety of 
objects including polymer rods and silica 
micro and nanoparticles. The addition of 
hydrogen peroxide to the system triggers a 
fast catalaselike decomposition of this fu
el, generating water and molecular oxygen. 
Oxygen bubble formation is accompanied 
by autonomous translational movement of 
the object as long as hydrogen peroxide is 
supplied as fuel. 

The molecular systems briefly dis
cussed here are still extremely primitive 
compared to any of the dynamic systems 
Nature uses. However, in moving from 
molecules to molecular systems we will 
have to learn how to integrate structure 
and function in a dynamic multicom
ponent ensemble. Far beyond this chal
lenge are, among others, the inclusion 
of kinetically driven processes, autono
mous processes, feedback loops and 
adaptive behaviour. Systems chemistry 
ultimately demands for a symphony of 
chemistries. 
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Diels Alder reaction and Michael addition, 
in water with near absolute levels of enan
tioselectivity. The information embedded 
in the DNA scaffold offers opportunities to 
construct more elaborate systems compris
ing several catalyst modules.

Cooperation of various components 
is also seen in a molecular capsule which 
contains lightswitchable nanovalves 
(Fig. 2).[5,6] The engineering of specific 
cysteine residues in the constriction zone 
of a mechanosensitive channel protein of 

large conductance, the MscL channel pro
tein, allowed the covalent incorporation 
of spiropyran photochemical switches. In 
this way opening or closing of a 3 nm pore 
in the MscL channel protein complex can 
be triggered by irradiation with UV or vis
ible light, respectively. Assembly of this 
nanovalve in the membrane of a liposome 
generates a molecular capsule with a new 
function; the controlled release of contents 
(for instance a dye or drug) from the inte
rior of this system can be triggered by a 
(noninvasive) light signal. 
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Fig. 4. Autonomous propulsion system based on a dinuclear manganese catalase mimic.


