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Abstract: In this contribution, the first examples of the catalytic highly enantioselective reduction of cyclic meso-
anhydrides to lactones and of thioanhydrides to thiolactones are described. The N-benzyl protected key build-
ing blocks in the industrial synthesis of (+)-biotin were so far only accessible by usage of expensive reagents in 
multi-step procedures. In contrast, homogeneous catalytic enantioselective hydrogenation of the corresponding 
meso-anhydride mediated by a metal phosphane complex proceeds with high optical induction (ee >95%) and 
excellent yield. The catalytic system provides a generally applicable new method for the preparation of lactones 
from cyclic anhydrides.
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1. Introduction

(+)-Biotin (1) is a water-soluble B-vita-
min that plays an important role as a coen-
zyme in carboxylation reactions and is an 
essential growth factor in every living cell. 
The daily need for an adult is about 0.03–
0.1 mg per day. Biotin has three stereo genic 
centres, but only the isomer with the con-
figuration (3aS,4S,6aR), d-(+)-biotin (1, 
Fig. 1), has full biological activity.[1]
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Fig. 1. (+)-Biotin (1).

Historically important dates from a 
chemical point of view are the publica-
tions of the first (stereochemically unspe-
cific) total synthesis by Harris, Folkers et 
al. at Merck in 1943,[2] and the first com-
mercially applicable biotin synthesis by 
Goldberg and Sternbach (Hoffmann-La 
Roche) in 1949.[3–5] The world market for 
1 is about 100 tonnes per year. Decades of 
research work in academia and industry 
were directed towards either an optimum 
synthetic approach or a biotechnological 
method. Current manufacturers of (+)-bi-
otin (1) are DSM and several Chinese 
producers. The general production method 

still applied today is multi-step chemical 
synthesis. For such a low-cost process, be-
ing in line with economy as well as ecol-
ogy, the general problems accompanied 
with efficient routes to 1 have to be solved: 
Introduction of nitrogen and sulphur to 
build up the highly functionalized bicyclic 
heterocycle, introduction of the side chain, 
and determining the correct stereochem-
istry (Fig. 2). Several approaches for the 
total synthesis of biotin, including indus-
trial, large-scale processes, were compiled 
in the excellent review of De Clercq.[6] 

2. The First Industrial Syntheses of 
(+)-Biotin

In 1946 Goldberg and Sternbach at 
Roche filed their patents on the first com-
mercially applicable biotin synthesis.[3–5] 
From a concept viewpoint, this lactone–thi-
olactone approach is still of interest today. 
Starting from cheap fumaric acid (2), the 
cyclic anhydride 6 is obtained via the meso-
compounds 3, 4, and 5 (Scheme 1). After 
several steps, the intermediate rac-8 was 
obtained from racemic thiolactone (rac-7). 
The early stage of the optical resolution 
(on the racemic sulfonium salt rac-9) was 
acceptable and not a drawback, since the 
‘wrong’ isomer was used as a pharmaceuti-
cally active compound for another product 
stream at that time. (+)-Biotin (1) could be 
produced by deprotection of intermediate 
11 obtained from chiral salt 10.

Routes using chiral starting materials 
available from natural sources were also 
thoroughly investigated.[6] Some examples 
are shown in Scheme 2. Particularly attrac-
tive were cheap carbohydrates like d-man-
nose or d-glucose, which have been selec-
tively derivatised in order to introduce the 
nitrogen and sulphur functionalities. Also 
l-cysteine was extensively studied for its 
suitability in industrially feasible routes.[7]

In general, however, none of such 
procedures made the way to a commer-
cial process. Even the use of very cheap 
starting materials with already established 
stereochemistry did not prove cost com-
petitive, mainly due to the large number of 
steps, often accompanied with protective 
group chemistry on highly functionalized 
intermediates. 

Fig. 2. Routes to 
(+)-biotin (1): General 
problems to be solved.
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3. Further Developments

A major step forward to improve the 
original Goldberg–Sternbach concept was 
the finding of Gerecke, Zimmermann and 
Aschwanden[8] that (chiral) lactone 12 can 
be directly converted to (chiral) thiolactone 
7 by treatment with potassium thioacetate 
(Scheme 3). The main advantage of this 
pathway to d-lactone 12 was based on the 
resolution step, which takes place at a very 
late stage of the synthesis. This procedure 
with recycling of the unwanted half-ester 
via meso-diacid 5 and the resolving agent 
ephedrine was carried out on commercial 
scale until the 1990s.

A further improvement replacing this 
procedure was invented by Pauling and 
Wehrli.[9] Diastereoselective ring open-
ing of anhydride 6 with a chiral alcohol, 
followed by reduction of the selectively 
formed diastereoisomeric half-ester by a 
complex hydride and ring closure provides 
an efficient route to key intermediate 12 
(Scheme 4), operated on industrial scale. 

An alternative concept applied at 
Lonza used tetronic acid (13), which is 
easily available from diketene (Scheme 
5[10–13]), as a starting material. The hetero-
geneous diastereoselective hydrogenation 
of intermediate 14 (originally delivering 
a 70:30 mixture of diastereomers 16a/b), 
was further developed in cooperation with 
the colleagues from the catalysis group of 
the former Ciba-Geigy. With the diphos-
phane josiphos2 (15) as a ligand, the ste-
reoselective Rh(i)-catalysed asymmetric 
hydrogenation resulted in a >99:1 ratio. 
The production, operated on multi-tonne 
scale, had to be terminated due to loss of 
chirality in the final hydrogenolysis depro-
tection step, which led to destruction of the 
(expensive) chiral auxiliary.

4. Asymmetric Hydrogenation 
of Cyclic Anhydride: The Dream 
Reaction

In all commercially attractive synthe-
sis schemes, one central question has to be 
answered: At which stage should chirality 
be introduced? Concerning the methods 
for achieving this, classical optical resolu-
tion, chiral pool approaches, and the use 
of chiral auxiliaries (including enzymes) 
have been evaluated. When reviewing 
processes delivering (+)-biotin (1) on an 
industrial scale, it becomes apparent that 
d-lactone 12 is best suited for this task. It 
is, therefore, the common intermediate in 
technical syntheses (Scheme 6). The most 
attractive precursor of this compound, in 
turn, is the easily available cyclic anhy-
dride 6. When combining those two facts, 
consequently a further breakthrough would 
be an enantioselective catalytic approach, 

Scheme 1. The Goldberg-Sternbach concept.
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e.g. the reduction of 6 to 12 (or of 19 to 
7, respectively), representing the recom-
mended method of the 21st century.

In general, asymmetric homogeneous 
catalysis with metal complexes is a key 
technology for the development of suc-
cessful processes in the competitive field 
of vitamins and fine chemicals.[14,15] How-
ever, despite the numerous achievements 
in organic synthesis methodology, certain 
functional group transformations are still 
not achievable in an efficient manner that 
satisfy the criteria of green chemistry. As 
an example, only few reports are known 
for the direct conversion of cyclic meso-
anhydrides to optically active lactones: For 
the stereoselective reduction of 6 to 12 with 
BINAL-H (Scheme 7[16]), over-stoichio-
metric amounts of the chiral reagent were 

used, and the hydrogenation of anhydrides 
20 with a chiral ruthenium DIOP complex 
delivered the corresponding lactones 21 in 
low (up to 20%) ee only (Scheme 8[17]). 

Therefore an efficient general catalytic 
method for such a transformation was lack-
ing. When tackling this high-rewarding, but 
high-risk topic, the conditions and environ-
ment for such an invention were far from 
optimum. In times of limited man power 
and financial resources, i.e. with basically 
no company-internal support and almost 
no budget at DSM Nutritional Products, 
there was only a chance to demonstrate the 
feasibility of the so far unattainable with 
a rather limited number of experiments. 
Finally the aim could be achieved only in 
cooperation with the homogeneous cataly-
sis group at Solvias, based on technical 

and scientific competence of contributors 
as well as personal contacts existing from 
former collaborations within the Basel 
chemical community. 

The transformation of cyclic meso-
anhydride 6 to d-lactone 12 (Scheme 9) 
was investigated as a first example of the 
catalytic highly enantioselective reduc-
tion of this kind:[18] The dream reaction 
indeed worked with high chemoselectiv-
ity, optical induction and yield! A limited 
screening of solvents, precursors for metal 
complexes and ligands, forming the ac-
tive catalysts, reaction conditions (hydro-
gen pressure, time and temperature), and 
substrate-to-catalyst (s/c) ratio delivered 
excellent results in a surprisingly short pe-
riod of time. 

Iridium and rhodium complexes with 
atropisomeric ligands like the examples 
shown in Scheme 9 delivered complete 
conversion and ee values of >95% after 
some optimisation work. These results 
could be achieved at an s/c of 5’000. 
Laboratory scale-up, piloting on multi-
kg scale, and production trials were per-
formed without particular difficulties. The 

Netscher et al., 30 March 2009
Chimia, contribution Sandmeyer

corrected Scheme 4

N N

O
CH2PhPhH2C

O OO

N N

O
CH2PhPhH2C

O O

N N

O
CH2PhPhH2C

R*OOC COOH

6 12

chiral alcohol
R*OH

stereoselective
ring opening with

MBH4

recycling

Scheme 4. The Pauling-Wehrli concept: Diastereoselective ring opening.

PPh2

P(tBu)2

HO

O O

tetronic acid

S O

N

O
CH2Ph

NPh

N NH

O O

Ph

O

N

O
CH2Ph

S

NPh

COOH

O O

N NHPh

O

Fe

O O

N NHPh

O

(+)-biotin 1

HN NH

O

S
(CH2)3COOH

H2, Pd/C

H2, 15,
Rh(I)-cat.

josiphos2

ligand:

+
>99:116a 16b

13

diketene

17 18

14

Netscher et al., 28 Febr. 2009
Chimia, contribution Sandmeyer

Scheme 5

15

Scheme 5. (+)-Biotin process using asymmetric hydrogenation (Lonza 
concept).

Scheme 6. Preferred key steps for introduction of chirality in commercial 
(+)-biotin syntheses.
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breakthrough method can be used for the 
synthesis of a variety of lactones which are 
suitable for various applications in the fine 
chemicals area.[19] The corresponding thio 
case, i.e. the transformation of thioanhy-
dride 19 to thiolactone 7 (Scheme 6) also 
worked, although with somewhat limited 
yield and selectivity under comparably 
more drastic conditions.[20] Investigations 
on the mechanism of the asymmetric re-
duction are underway. 

5. Conclusions

An important step towards an environ-
mentally benign production method for 
(+)-biotin has been taken by the enantiose-
lective catalytic hydrogenation of the cy-
clic anhydride to the lactone intermediate. 
This method provides a tool for the effi-
cient introduction of chirality in the syn-
thetic scheme to biotin. Even more than 60 
years after the first commercial synthesis 
of biotin, main elements of the original ap-
proach of Goldberg and Sternbach are still 
applicable. Even after more than hundred 
years of research on biotin, breakthrough 
inventions are still possible.
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