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Abstract: Disulfoxides with atropisomeric backbones are introduced as readily available chiral ligands for the
rhodium-catalyzed 1,4-addition of arylboronic acids to unsaturated carbonyl compounds. The ligands are ob-
tained in pure form from either commercially available or easily synthesized starting materials. Precatalysts with
general formula {(disulfoxide)RhCl}2 were prepared in high yield and were fully characterized. Preliminary results
on the influence of steric and electronic modifications of the ligand structure and their impact on the catalytic
behavior are presented.
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Introduction

While a plethora of chiral ligating entities
for metals have been reported in the past,
phosphorus- and nitrogen-based ligands
play by far the most important role for sta-
bilizing the relatively soft late-transition
metal (LTM) centers. Perhaps due to the
fact that organic sulfur-containing com-
pounds are often thought to poison met-
als in catalytic cycles, LTMs that contain
sulfur-based ligands have until now only
played a minor role in (asymmetric) catal-
ysis.[1] Within the category of compounds
that bind metals through their sulfur moi-
ety, sulfoxides seem to be particularly ap-
pealing. These compounds already play an
important role as chiral auxiliaries in asym-
metric synthesis,[2] in many cases having
chiral discrimination associated with metal
binding events involving either sulfur or
oxygen (ambidentate ability), and studies
on their basic coordination chemistry exist
in the literature.[3–6] Some potential advan-
tages of sulfoxides are their inherent chi-
rality at sulfur, their non-toxicity, the high

stability to moisture and oxygen, as well as
their facile synthesis in enantiomerically
pure form.

We have recently started investigating
the potential of chelating, sulfoxide-based
compounds as ligands in asymmetric late-
transition metal chemistry.[7] The synthesis
of atropisomeric disulfoxides, their com-
plexation and first studies on their catalytic
activity in metal-catalyzed organic trans-
formations are described herein.

Synthesis and Complexation

The first disulfoxide ligand synthe-
sized in our laboratory was a 1,1’-binaph-
thyl derivative similar to the well-known
BINAP (1,1’-binaphthalene-2,2’-diyl-bis-
diphenylphosphine) ligand developed by
Noyori and coworkers.[8] Following the
original synthesis of BINAP, the dilithiated
intermediate of racemic DBBN (rac-2,2’-
dibromo-1,1’-binaphthyl) was reacted with
either (+)-(1S)-menthyl-(R)- or (-)-(1R)-
menthyl-(S)-p-toluenesulfinate (Scheme

1), to give a pair of diastereoisomers in 80–
90% overall yield. It is important to men-
tion that the two diastereoisomers formed
can be easily separated via column chro-
matography, independently from whether
S- or R sulfinates are employed. This ren-
ders the synthesis of 1 very straightforward
and quantities of up to 20 grams can be
easily synthesized in two working days.

In analogy to the nomenclature of
BINAP and its derivatives, we name this
ligand p-tol-BINASO [1,1’-binaphtha-
lene-2,2’-diyl-bis-(p-tolylsulfoxide), 1].
Ligand [(P,R

S
,R

S
)-1] reacts readily with

[RhCl(C
2
H

4
)

2
]

2
in methylene chloride at

room temperature.[9] Crystallization from
the concentrated reaction solution by layer-
ing THF at –35 °C afforded burgundy crys-
tals of [{(P,R

S
,R

S
)-p-tol-BINASO}RhCl]

2
(2) in high yield (>90%). Figs 1 and 2 show
the ORTEP drawings of both (M,R

S
,R

S
)-p-

tol-BINASO (1) and [{(P,R
S
,R

S
)-p-tol-BI-

NASO}RhCl]
2

(2), allowing unambiguous
assignment of the absolute configuration of
all sites of the free ligand and the rhodium-
coordinated disulfoxide.
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Scheme 1. Synthesis of p-tol-BINASO from commercially available starting materials.
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The Table compares selected bond
lengths and angles of both the free ligand
(M,R

S
,R

S
)-p-tol-BINASO (1) and the metal

complex [{(P,R
S
,R

S
)-p-tol-BINASO}Rh-

Cl]
2
(2) with existing literature data for (R)-

BINAP,[10] and [{(R)-BINAP}RhCl]
2
.[11]

While the sulfur–carbon and phospho-
rous–carbon bond distances differ only
insignificantly in both the ligands and the
complexes, the S–Rh distances are slightly
shorter than the corresponding P–Rh bond
lengths. This somewhat different bonding
situation subsequently increases the bite
angle of BINASO (98.1°) over BINAP
(90.5°), whereas the dihedral angle be-
tween the planes of the two naphthyl units

remains very similar (74.1° BINASO;
76.0° BINAP). Finally, measurement of
the Rh…Rh distances in 2 reveals a clearly
more compact dimer than found for [{(R)-
BINAP}RhCl]

2
.[12]

First Catalytic Studies

Since the first report on the asym-
metric rhodium-catalyzed 1,4-addition of
boronic acids to enones by Miyaura and
Hayashi employing BINAP,[13] a variety
of ligands has been investigated for this
transformation.[14] With catalyst precur-
sor 2 at hand and considering the obvious

structural similarity between the two sys-
tems, we reasoned that the 1,4-addition
reaction could represent a very conve-
nient model for our first catalytic activity
studies.

Following the protocol applied us-
ing BINAP as ligand, initial experiments
with catalyst 2 (3 mol%) were carried out
in a mixture of dioxane/water/KOH for
the coupling of phenylboronic acid and
2-cyclohexenone and gave excellent se-
lectivities (98% ee), but low overall yields
(<30%). Gratifyingly, substituting dioxane
with toluene leads to complete conversion
to the product within 30 minutes at room
temperature while maintaining the high ee
values. Further optimization of the reaction
conditions showed that catalyst loadings
could be lowered to 1.5 mol% Rh without
significant loss of reactivity. In addition,
the catalytic system does not require ex-
cess of expensive arylboronic acid and can
be run with almost stoichiometric amounts
at 40 °C (Scheme 2).

Using these optimized conditions, a
number of arylboronic acids were screened
with 2-cyclohexenone. Excellent yields
and selectivities were achieved with a wide
variety of ortho-, meta- and para-substi-
tuted arylboronic acids, containing both
electron-withdrawing or electron-donating
groups. Enones with different ring sizes and
also a cyclic ester reacted with PhB(OH)

2
and gave the same high level of yield and
enantioselectivity. It should be noted that
the selectivities and reactivities observed
are among the highest for the rhodium-
catalyzed asymmetric 1,4-addition. More
importantly, commercially available start-
ing materials can be used without purifi-
cation, thus confirming the robustness of
the catalyst precursor towards common
impurities.[7]

Fig. 2. ORTEP drawings (50% probability) of [{(P,RS,RS)-p-tol-BINASO}RhCl]2 (2).Fig. 1. ORTEP drawings (50% probability) of
(M,RS,RS)-p-tol-BINASO (1).

Table. Select bond lengths (Å) and angles (deg) for free ligands and Rhodium complexes.

(M,RS,RS)-p-tol-BINASO

S1–O1 1.4922(16) S1–C2 1.7959 (18) S1–C9 1.7889 (18)

O1–S1-C9 105.78(9) O1-S1-C2 106.16(9) C9-S1-C2 101.92(8)

[{(P,RS,RS)-p-tol-BINASO}RhCl]2

S1–O1 1.466(4) S1–C1 1.802(5) S1–C21 1.782(5)

Rh1–S1 2.1942(13) Rh1–S2 2.1893(12) Rh1.....Rh1 3.0194(7)

S2-Rh1-S1 98.14(4) Cl1-Rh1-Cl1 81.80(6) Rh1-Cl1-Rh1 78.94(4)

(R)-BINAPa

P1–C1 1.830(5) P1–C31 1.819(5) P1–C61 1.813(6)

C1-P1-C31 103.5(2) C1-P1-C41 101.4(2) C31-P1-C41 103.3(3)

[{(R)-BINAP}RhCl]2
a

P1–C1 1.862(6) P1–C51 1.844(6) P1–C61 1.813(6)

Rh1–P1 2.2144(17) Rh1–P2 2.2056(16) Rh1.....Rh2 3.2874(7)

P1-Rh1-P2 90.20(6) Cl1-Rh1-Cl2 80.45(5) Cl1-Rh1-Cl2 80.45(5)

a Numbering of atoms has been taken from refs. [10] and [11] respectively.
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tion and complexation of these derivatives
seems not to be significantly different and
first catalytic experiments show that elec-
tronic factors do indeed play an important
role. We hope that future studies will reveal
trends that may be used for optimizing the
disulfoxide ligand framework further.

Summary and Outlook

Chelating disulfoxides based on chiral
atropisomeric backbone structures have
been prepared. First catalytic studies show
very high activities and selectivities in the
rhodium-catalyzed 1,4-addition of arylbo-
ronic acids to cyclic α,β-unsaturated ke-
tones and esters, all the while using only
stoichiometric amounts of expensive bo-
ronic acids.[7]

A detailed study is being carried out on
the tuning of steric and electronic proper-
ties of these ligands. Our initial results on
ligand modifications indicate that disul-
foxides are not only synthetically versa-
tile, but also susceptible to ligand design
optimization. A compilation of results
summarizing the synthesis, complexation
and catalytic performance in the rhodium
catalyzed 1,4-addition with these new at-
ropisomeric disulfoxides will be published
in due course as part of a broader research
effort aimed at determining the potential of
this ligand family.
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Scheme 3. DAG methodology applied for the synthesis of new sulfinates.
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