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Abstract: The tetrasaccharide 4, a substructure of ganglioside GQ1ba, shows a remarkable affinity for the myelin-
associated glycoprotein (MAG) and was therefore selected as starting point for a lead optimization program. In our 
search for structurally simplified and pharmacokinetically improved mimics of 4, antagonists with modifications of 
the core disaccharide Galb(1-3)GalNAc, as well as the terminal a(2-3)- and the internal a(2-6)-linked neuraminic 
acid were synthesized and tested in target-based binding assays. Compared to the reference tetrasaccharide 4, 
the most potent antagonist 17 exhibits a 360-fold improved affinity. Furthermore, pharmacokinetic parameters 
such as stability in the cerebrospinal fluid, logD and permeation through the BBB indicate the drug-like proper-
ties of antagonist 17.
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Introduction

The injured adult mammalian central ner-
vous system (CNS) lacks the ability for 
axon regeneration,[1,2] predominantly due 
to specific inhibitors expressed on residual 
myelin and on astrocytes recruited to the 
site of injury.[3–7] Several inhibitor proteins 
have been identified, one of them being the 
myelin-associated glycoprotein (MAG).[8] 
MAG is a transmembrane glycoprotein[9] 
belonging to the so-called Siglecs, a family 
of the sialic acid-binding immunoglobulin 
like lectins.[10,11] On the surface of neurons, 
MAG interacts with two classes of targets: 
Proteins of the family of Nogo receptors 
(NgR)[12,13] and brain gangliosides (GD1a 
and GT1b)[11,14–16] (Fig. 1). Although the 
relative roles of gangliosides and NgRs as 
MAG ligands have yet to be resolved,[8,17] 
in some systems, MAG inhibition is com-
pletely reversed by sialidase treatment, sug-
gesting that MAG uses sialylated glycans 

as its major axonal ligands.[18] Therefore, 
blocking MAG with potent glycomimetic 
antagonists may be a valuable therapeutic 
approach to enhance axon regeneration.

Schnaar and coworkers[19] reported that 
a limited set of structurally related ganglio-
sides like GT1b or GQ1ba (Fig. 2), known 
to be expressed on myelinated neurons in 
vivo, are functional ligands for MAG. Re-
cently, the MAG-affinity of a partial struc-
ture of GQ1ba, the tetrasaccharide 2, could 
clearly be correlated with its ability to re-
verse MAG-mediated inhibition of axonal 
outgrowth.[22] Since SAR studies indicate 
that not only the terminal, a(2-3)-linked, 
but also the internal, a(2-6)-linked sialic 
acid is essential for MAG binding, various 
partial structures of 1[20] as well as sulfated 
analogs, e.g. 3[21] were synthesized.

Design of Glycomimetics

High-affinity MAG antagonists with 
concurrent drug-like pharmacokinetic 
properties would provide a valuable tool 
for the investigation of the exact physio
logical role of MAG in the inhibitory 
cascade leading to the collapse of growth 
cones, the reason for the failure of regener-
ation of injuries in the CNS. Because of the 
shallow binding site typically present in 
lectins, carbohydrate ligands often exhibit 
only modest, i.e. milli- to micromolar af-
finities.[23] This also proved true for MAG 
with a 180 micromolar affinity for tetrasac-
charide 4, the binding epitope of GQ1ba 

(Fig. 3).[24] In addition to the therefore 
required improvement of affinity, phar-
macokinetic issues as metabolic stability, 
e.g. sialidase stability[26] or permeation of 
the blood brain barrier have also to be ad-
dressed. For the in vivo application, it is 
planned to add the antagonist by infusion 
to the site of injury. Therefore, a prolonged 
stability in the cerebrospinal fluid is also 
required. Furthermore, to maintain the 
necessary minimal therapeutic concentra-
tion in the CNS, a loss of the antagonist by 
an active or passive transport mechanism 
would be detrimental.

In a first approach, we focused on a 
reduction of the structural complexity 
of GQ1ba (1) and, at the same time, an 
improvement of pharmacodynamic and 
pharmacokinetic properties. From vari-
ous structure-affinity relationship studies 
(SAR),[27,28] the tetrasaccharide 4 was 
identified as the minimal carbohydrate 
epitope. Detailed binding information 
of epitope 4 was obtained by STD NMR 
experiments[24] (Fig. 3). They indicated 
important lipophilic interactions of the 
glycerol side chain of the a(2-3)-linked 
N-acetyl neuraminic acid (Neu5Ac), the 
b-face of the galactose moiety and the N-
acetates of both Neu5Ac residues. In addi-
tion, the carboxylates of the two Neu5Ac 
moieties are involved in salt bridges and 
the C(9)-OH of the a(2-3)-linked Neu5Ac 
is forming a relevant hydrogen bond.[25] A 
verification of these findings by docking 
studies to a homology model of MAG[29,30] 
revealed the corresponding amino acids 
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forming the binding site (Figs 3 and 6). 
Based on this information, a rational ap-
proach for the design of MAG antagonists 
was envisaged.

Replacement of the  
Galb(1-3)GalNAc Core

In a first approach, the Galb(1-3)
GalNAc core, establishing a lipophilic 
contact with MAG,[24] was replaced by 
biphenyl (5), which acts as a linker 
to position the carboxylates of the two 

Neu5Ac moieties in the appropriate spa-
tial orientation (Fig. 4). In addition, the 
biphenyl linker enables a lipophilic con-
tact with the binding site and at the same 
time reduces the high polarity of the lead 
structure 4. Starting from glycosyl donor 
6,[37] the building blocks 7 and 8 were 
synthesized, permitting the formation of 
the protected test compound 9 by Suzuki 
coupling in an excellent yield (Scheme 1). 
Mimic 5 was obtained after deprotection 
under Zemplén conditions and showed a 

four-fold reduction of affinity compared 
to tetrasaccharide 4[36] (Table 1). For an 
additional structural simplification, the 
a(2-6)-linked Neu5Ac moiety was re-
placed by acetic acid leading to antagonist 
10, which showed a slightly lower affin-
ity than 5. To further fine-tune the spatial 
orientation of the carboxylates, the biphe-
nyl linker was replaced by a 1,2,3-triazol-
4-yl-phenyl moiety, a modification with 
practically no influence on the affinity for 
MAG.[38]

Lipophilic Substituents on the  
a(2-3)-linked Sialic Acid

A pivotal simplification of the tetrasac-
charide lead structure 4 was reported by 
Kelm and Brossmer who modified the a(2-
3)-linked sialic acid in the 2-, 5- or 9-posi-
tion to obtain up to a ten-fold enhancement 
of affinity compared to lead 4.[28,39,40] Fur-
ther optimization of these three positions 
led to antagonist 17 (Scheme 2) with a 
360-fold improved affinity, i.e. 500 nano-
molar.[25,41]

Starting from the Boc-protected neur-
aminic acid derivative 12,[41] 14 was ob-
tained by deprotection with TMSCl and 
PhOH (13) followed by acylation with 
fluoroacetyl chloride. Glycosylation using 
2,3-difluorobenzyl alcohol (15), ami-
dation using modified Staudinger condi-
tions[42] (16) and final deprotection gave 
the test compound 17.
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Fig. 2. GQ1ba (1)[19] and partial structures thereof.[20,21] Since the reported affinity data were 
obtained in different assay formats, they should be compared with caution. For binding of MAG-
transfected COS cells to immobilized ganglioside 1 or to the disulfated GM1b analog 3, apparent 
KDs of 38 and 7.4 pmol/well were reported.[21] In a competitive binding assay with tetrasaccharide 
2, an IC50 of 300 nM was determined.[20]

Fig. 3. Binding epitope of tetrasaccharide 4 as determined by STD 
NMR.[24] Besides two salt bridges by the carboxylates of the Neu5Ac 
moieties and an important hydrogen bond donated by the C(9)-OH 
of the a(2-3)-linked Neu5Ac,[25] the binding epitope involves lipophilic 
interactions of the glycerol side chain of the a(2-3)-linked Neu5Ac, 
the b-face of the galactose moiety and the N-acetates of the Neu5Ac 
residues.

Fig. 1. Myelin-associated glycoprotein (MAG), Nogo 66 and 
oligodendrocyte myelin glycoprotein (OMgp) bind to the Nogo receptor 
(NgR). Via the neurotrophin receptor p75NTR, the inhibitory signal is 
transduced into the cytosol of the neuron. MAG also binds to the 
gangliosides GD1a and GT1b. Again, with co-receptor p75NTR, the 
inhibitory signal is transduced into the cytosol. Intracellularly, the small 
GTPase RhoA is activated, which leads to a collapse of the growth 
cones of the injured axon (adapted from Filbin et al.[5]).
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For the K
D
 determination in the Bi-

acore assay, MAG
d1-3

-Fc could not be im-
mobilized by amine coupling, because 
three lysines are positioned in proximity 
to the carbohydrate binding site (Fig. 5B). 
Therefore, MAG

d1-3
-Fc was immobilized 

on a dextran chip containing a surface of 
covalently bound protein A. A reference 
cell providing only protein A was used to 
compensate unspecific binding to the ma-
trix (Figs 5C and 5D).

Stability in Cerebrospinal Fluid
For nerve regeneration, MAG antago-

nists will most likely be applied to the CNS 
by a local infusion. We therefore tested the 
stability of the fluoroacetate 17 in artifi-
cial cerebrospinal fluid (aCSF)[44] for 19 h 
at 37 °C and, as a control, in buffer solu-
tion. According to LC-MS analysis, more 
than 95% of the initial concentrations of 
17 were recovered from both media, pre-
dicting a high stability in the CNS, the 

Lipophilic and Hydrophilic 
Replacements of the a(2-6)-linked 
Sialic Acid

Since the carboxylate of the a(2-6)-
linked Neu5Ac in tetrasaccharide 4 forms 
a salt bridge with Lys67 and the N-acetate 
a lipophilic contact with Tyr69 (Figs 3 and 
6A), hydrophilic as well as lipophilic sub-
stitutes were explored. A replacement by 
lactic acid (22) or biphenylmethyl (23) 
yielded affinities in the range of tetrasaccha-
ride 4 (Scheme 3). Combined with the most 
successful modification of the 9-position 
of the a(2-3)-linked Neu5Ac (Scheme 2) 
antagonist 29 with low micromolar affinity 
could be identified (Scheme 4).[30]

Biological Evaluation

Determination of Affinity for MAG
For the evaluation of the binding prop-

erties of these new MAG antagonists two 

assay formats were applied; a fluorescent 
hapten binding assay[43] and a surface 
plasmon resonance based biosensor (Bi-
acore) experiment[30,41] (Fig. 5). For the 
hapten inhibition assay, a recombinant 
protein consisting of the three N-terminal 
domains of MAG and the Fc part of hu-
man IgG (MAG

d1-3
-Fc) was produced by 

expression in CHO cells and affinity puri-
fication on protein A-agarose[43] (Fig. 5A). 
The relative inhibitory concentrations 
(rIC

50
) of the test compounds as competi-

tive ligands were determined in microti-
ter plates coated with fetuin as binding 
target for MAG

d1-3
-Fc. By complexing 

the Fc-part with alkaline phosphatase-
labeled anti-Fc antibodies and measuring 
the initial velocity of fluorescein release 
from fluorescein diphosphate, the amount 
of bound MAG

d1-3
-Fc can be determined. 

The affinities were measured relative to 
the reference compound 4 (rIC

50
 of 1, 

Table 1). 

5[36]

Fig. 4. Replacement of the Galb(1-3)GalNAc 
core of 4 by a biphenyl (5) leads to only 
marginal changes of the required spatial 
orientation of the carboxylate of the a(2-
6)-linked Neu5Ac, but results in a four-fold 
reduction in affinity.[36]

O

N N

N

O

O

AcHN

OR1

R1O

OR1
OR1

CO2R2

OO

R2OOCR1O

AcHN
R1O

OH
OR1

9, R1=Ac, R2=Me
5[36], R1=H, R2=Na

e)

O

ClAcO

AcHN
AcO

OAc
OAc

OO

COOMeAcO

AcHN
AcO

OAc
OAc

B
O

O

O

O

AcHN

OAc

R1O

OAc

OAc

CO2Me

I

COOMe +

a,b)

c)

d)

6

8

7

COONa

COONa
O

NaOOCHO

AcHN
HO

OH
OH

O

NaOOCHO

AcHN
HO

OH
OH

O

11[38]

10[38]

Scheme 1. a) 4-Bromophenol, BnNEt3Br, 
aq. NaOH/DCM, 40 °C, 2.5 h, 56%; b) 
bis(picanolato)diborane, KOAc, PdCl2(dppf), 
dppf, dioxane, MW 120 °C, 45 min, 85%; c) 
3-iodophenol, BnNEt3Br, aq. NaOH/DCM, 40 
°C, 2.5 h, 46%; d) Ag2CO3, Pd(PPh3)4, dioxane, 
MW 120 °C, 7 h, 77%; e) i. NaOMe, MeOH, r.t., 
17 h, ii. aq. NaOH, r.t., 6 h, iii. Dowex 50 × 8 
(Na+), 56%.



20  CHIMIA 2010, 64, No. 1/2� From Chemical Research to Industrial Applications

Table 1. Relative inhibitory concentrations (rIC50) of MAG antagonists, KD 
values of compounds 4, 17 and 29.

Entry Compound rIC50
a KD [µM]

1 1.00 180b

2 2.39 n.d.c

3 4.00 n.d.c

4 3.64 n.d.c

5 0.0002 0.5d

6 1.02 n.d.c

7 0.80 n.d.c

8 0.0027 2.83d

arIC50 is the concentration when 50% of the protein are 
inhibited, measured relative to reference compound 4; 
bdetermined by STD NMR; cn.d. not determined; ddetermined 
by surface plasmon resonance (Biacore.)
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target compartment of an in vivo applica-
tion. Furthermore, the logD

octanol/water
 value 

of –0.26 is beneficial for an intrathecal ap-
plication, since this distribution coefficient 
suggests a loss from the CNS compartment 
by a passive transport mechanism to be un-
likely. This hypothesis is further supported 
by the results of the BBB-PAMPA assay 
showing a log P

e
 value of –10 for 17. For 

values below –5.7, no passive permeation 
through the BBB is expected.[45]

Docking of Antagonists to a 
Homology Model of MAG

For docking studies of the antagonists 
4, 17 and 29, a homology model of MAG 

based on the three-dimensional structure 
of sialoadhesin was used.[29,30] The ligands 
were first manually docked to the binding 
pocket of the MAG model using the salt 
bridge to Arg118 and the hydrogen bond 
of the 9-OH to the backbone carbonyl of 
Phe129 as anchor points. Next, the pro-
tein–ligand complex was minimized in 
aqueous solution and then subjected to a 
molecular-dynamics equilibration proto-
col. The lowest-energy binding modes of 
tetrasaccharide 4 and mimics 17 and 29 are 
compared in Fig. 6. 

All three antagonists, tetrasaccharide 4 
(Fig. 6A) and the mimics 17 (Fig. 6B) and 
29 (Fig. 6C) form salt bridges with Arg118. 
In addition, the three antagonists establish 
a crucial hydrophobic interaction between 
the 5-amido groups and the side chains of 

Trp22 and Tyr124. Whereas 4 develops a 
second salt bridge between the carboxylate 
of the a(2-6)-linked Neu5Ac and Lys67, 
the mimics 17 and 29 establish prominent 
interactions with two hydrophobic pock-
ets. Glu131 and Tyr127 are homing the p-
chloro benzamide substituent and the side 
chains of Trp59, Tyr60, Tyr69 and Tyr116 
are lining the main hydrophobic pocket 
and accommodate the 2,3-difluorobenzene 
(17) and biphenylmethyl moiety (29), 
respectively. 

Conclusion

Overall, with antagonist 17 the affin-
ity of lead 4 could be improved more than 
350-fold. Its pharmacokinetic properties 
certify the drug-like properties of the best 
so far identified MAG antagonist. A fur-
ther important issue to be addressed is 
the metabolic stability of the presented 
oligosaccharide mimics. In general, the 
substrate specificity of mammalian siali-
dases is determined by the linkage type of 
the terminal sialic acid residue (2-3, 2-6 
or 2-8) and does not depend on the struc-
ture of the underlying oligosaccharide.[46] 
Therefore, it cannot be excluded that 
the presented mimics are metabolically 
cleaved by sialidases. Nevertheless, this 
new class of MAG blockers constitute an 
important step toward the development of 
potent oligosaccharide mimics. 
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Fig. 6. The three-dimensional structures of 4, 17 and 29 were generated 
using the MacroModel software[31] and optimized in aqueous solution by 
means of the AMBER* force field.[32] Atomic partial charges (MNDO/ESP) 
were then generated using MOPAC.[33] The ligands were first manually 
docked and the protein–ligand complex was minimized in aqueous 
solution and then subjected to a molecular-dynamics equilibration 
protocol (24 ps at 10 K, heating to 300 K during 48 ps, 1 ps = 10–12 
s), followed by a molecular dynamic at 300 K for 4 ns performed with 
Desmond[34] (at 2.4 ps intervals). The structures of the trajectory along 
the molecular dynamic simulation have been sampled through a 
hierarchical cluster linkage method at 2.4 ps intervals. The images have 
been generated using VMD.[35] A) Tetrasaccharide 4, a substructure of 
ganglioside GQ1ba, B) antagonist 29; antagonist 17.


