CH

Swiss Science Concentrates

A CHIMIA Column
Short Abstracts of Interesting Recent Publications of Swiss Origin

Transfer Hydrogenation of Imines with AmmoniaBorane: A Concerted Double-Hydrogenation-Transfer Reaction

X. Yang, L. Zhao, T. Fox, Z.-X. Wang, and H. Berke, Angew. Chem. Int. Ed. 2010, 49, 2058
University of Zurich and Graduate University of Chinese Academy of Sciences
Ammonia-borane $\left(\mathrm{H}_{3} \mathrm{~N}-\mathrm{BH}_{3}\right)$ is considered a feasible material for chemical hydrogen storage due to its potentially very high storage capacity (19.6 weight $\% ~ H$). Herein, this reagent was used for metal-free direct transfer hydrogenations of various imines which proceeded under mild conditions. The results of deuterium labeling studies, primary deuterium kinetic isotope effects, Hammett correlations and DFT calculations were all supportive of a concerted double-hydrogen-transfer mechanism.

Highly Resolved Spectra of Gas-Phase Gramicidin S: A Benchmark for Peptide Structure Calculations

N. S. Nagornova, T. R. Rizzo, and O. V. Boyarkin*, J. Am. Chem. Soc. 2010, 132, 4040
EPFL
The authors report vibrationally resolved UV spectrum of doubly protonated gramicidin S (GS) in the gas phase and, subsequently, a highly resolved, conformer-specific IR spectrum in the $6 \mu \mathrm{~m}$ fingerprint region, using a cold ion trap in combination with table-top lasers. The study has revealed at least three conformational states of GS populated under our experimental conditions, with the major one showing evidence of a symmetric $\left(C_{2}\right)$ structure similar to that in the condensed phase. The derived qualitative constraints, along with the measured vibrational frequencies, serve as a benchmark for computations of peptide structure.

Radical Stability Directs Electron Capture and Transfer Dissociation of β-Amino Acids in Peptides

H. B. Hamidane, A. Vorobyev, M. Larregola, A. Lukaszuk, D. Tourwé, S. Lavielle, P. Karoyan, and Y. O. Tsybin, Chem. Eur. J. 2010, 16, 4612
EPFL, Université Pierre et Marie Curie and Vrije Universiteit Brussel
This paper describes the characteristics of the radical-iondriven dissociation of β^{2} - and β^{3}-amino acids incorporated into α-peptides at a single or multiple positions, as probed by elec-tron-capture and electron-transfer dissociation (ECD/ETD) tandem mass spectrometry (see Fig.). The radical stability of amino acid side chains dominates the nearby peptide backbone bond rupture of β-amino acids in ECD/ETD to a substantially larger extent than it does with α-amino acids.
2

An Atomistic Picture of the Regeneration Process in Dye Sensitized Solar Cells

F. Schiffmann, J. VandeVondele*, J. Hutter, A. Urakawa, R. Wirz, and A. Baiker, PNAS, 2010, 107, 4830
University of Zurich and ETH Zurich
In this article, the authors have identified a highly efficient mechanism for the regeneration of cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) sensitizing dye by I^{-}using molecular dynamics simulations based on density functional theory. Among the different results, they found that barrierfree complex formation of the oxidized dye with both I^{-}and I_{2}^{-}, and facile dissociation of I_{2}^{-}and I_{3}^{-}from the reduced dye are key steps in this process. Also, in situ vibrational spectroscopy confirms the reversible binding of I_{2} to the thiocyanate group of the reduced dye.

