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Abstract: Carbohydrates or glycans are major cellular macromolecules, working for a variety of vital biological 
functions. Due to long-term efforts by experimentalists, the current number of structurally different, determined 
carbohydrates has exceeded 10,000 or more. As a result data mining-based approaches for glycans (or trees in 
a computer science sense) have attracted attention and have been developed over the last five years, presenting 
new techniques even from computer science viewpoints. This review summarizes cutting-edge techniques for 
glycans in each of the three categories of data mining: classification, clustering and frequent pattern mining, and 
shows results obtained by applying these techniques to real sets of glycan structures.
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1. Introduction

Oligosaccharides and glycans are major 
cellular macromolecules associated with 
a variety of important biological phenom-
ena, including antigen-antibody interac-
tion[1] and cell fate controlling.[2] Pro-
teins and DNAs consist of twenty types 
of amino acids and four types of nucleo-
tides, respectively. Likewise glycans have 
building blocks, called monosaccharides, 
which however are more diverse, the ma-
jor ones being fructose, galactose, glucose 
and mannose.[3] The uniqueness of carbo-
hydrates is in the connection of monosac-
charides, where two or more monosaccha-
rides can connect to one monosaccharide 
without any cycle, forming branch-shaped 
extensions. In a computer science sense, 

glycans can be trees, consisting of nodes 
and edges (which connect nodes), corre-
sponding to monosaccharides and chemi-
cal linkages, respectively. Moreover gly-
cans are rooted directed ordered trees be-
cause i) a glycan connects to a protein (an 
amino acid) by only one monosaccharide, 
called the root, ii) connections are directed 
from the root to leaves, meaning that two 
connected monosaccharides can be a par-
ent (closer to the root) and a child (closer 
to a leaf), ancestors and descendants being 
able to be defined in a similar manner, and 
iii) monosaccharides (children) can be or-
dered by carbon numbers attached to link-
ages to another monosaccharide (parent), 
meaning that children are ordered from 
the oldest sibling to the youngest sibling. 
Hereafter a subtree means a node in a tree 
and its all descendants and edges from that 
node to leaves, while a supertree of tree T 
is a tree having T as a subtree. The unique 
structure of carbohydrates makes them 
different from other macromolecules such 
as proteins and DNAs which are simpler 
sequences of building blocks. Furthermore 
this uniqueness has made it hard to de-
termine the tree structures of glycans ex-
perimentally by which the size of glycan 
structure databases has been kept small 
and its speed to develop has been forced 
to be slow. However, due to the develop-
ment of carbohydrate research, the current 
number of structurally different glycans in 
a major database on glycans reaches more 
than ten thousands, which will be further 
increased in the near future by using high-
throughput techniques.[4] Thus in glycoin-
formatics, developing efficient approaches 
for mining rules or patterns from trees and 
applying the approaches to a glycan data-
base would be reasonable and promising 
to find biological significance embedded 
in glycan structures.[5,6]

2. Mining from Glycan Structures: 
Data Mining Techniques for Trees

In general, current approaches for min-
ing from data or machine learning can 
be classified into roughly three types: i) 
classification (or supervised learning), 
ii) clustering (or unsupervised learning) 
and iii) frequent pattern mining.[7,8] Here 
we briefly explain the difference between 
these concepts, under which the input is 
always called examples (which are in our 
case rooted directed ordered trees). In clas-
sification, examples are labeled or class 
labels are attached to examples, and the 
purpose is to make a classifier/predictor 
which can predict a class to be assigned to 
a newly given example. This is supervised 
learning. On the other hand, in clustering, 
examples are not labeled, and the purpose 
here is to assign examples to some groups 
by which we can see the similarity between 
examples, such as if two examples are in 
the same group, they are similar. This is 
unsupervised learning, which can give la-
bels to examples, while labels are given in 
supervised learning. In frequent pattern 
mining, the input is unlabeled examples 
(so in some sense this is unsupervised 
learning, but in this review we do not cat-
egorize frequent pattern mining into unsu-
pervised learning). The purpose is to find 
patterns which appear a larger number of 
times than a prefixed number, by which we 
can see what patterns appear frequently.

2.1 Classification over Trees
Currently the most popular approach 

in supervised learning is so-called sup-
port vector machines (SVMs), in which 
we use a kernel function that represents a 
similarity between two examples.[9] The 
objective here is to find a classifier which 
can separate examples in one class from 
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tree, where the top square means the root, 
solid lines show directed edges (chemi-
cal linkages) from parents to children and 
dotted lines show ordered children. Fig. 
1 (b) shows a HTMM over the tree in 
(a), where you can see that thick lines of 
state transitions are always directed from 
parents to children. Fig. 1 (c) shows an 
OTMM over the tree in (a), where you can 
see that thick lines of state transition are 
from parents to children if the children are 
the oldest; otherwise thick lines are from 
older siblings to younger siblings. That 
is, OTMM considers ordered children as 
well as parent-to-child dependencies via 
parents and the oldest siblings. Fig. 1 (d) 
shows a PSTMM over the tree in (a), where 
you can see that thick lines of state transi-
tions are always from parents to children 
as well as from older siblings to younger 
siblings. This means that PSTMM always 
considers both parent-to-child dependen-
cies and dependencies between ordered 
children. Thus we can see that PSTMM 
is the most complex and well-considered 

those in the other class (if class labels 
are binary). The simplest way is to use 
a linear function, corresponding to us-
ing an inner product as a kernel function. 
However, it would be hard to separate 
examples depending upon class labels by 
using a simple linear function. This means 
that it is important to design a good ker-
nel function by which we can separate ex-
amples easily. For the case that examples 
are trees, a kernel function for computing 
a similarity between two input trees has 
been already proposed.[10] The idea be-
hind the ‘tree’ kernel is to check subtrees, 
which appear in the two input trees com-
monly, and if they are bigger and/or the 
number of common subtrees is larger, the 
two input trees should be more similar. 
This can be computed in a very efficient 
manner by using dynamic programming, 
and a tree kernel specialized for glycans 
was also proposed.[11]

2.2 Clustering: Probabilistic Models 
for Trees

There are a variety of approaches in 
unsupervised learning. In this review, we 
focus on probabilistic models, which are 
models with probability parameters, to be 
estimated from given data. Rather than 
clustering, probabilistic models allow bi-
nary classification if binary classes are like 
the examples in question and others. This 
case, after training a probabilistic model 
from examples in question, we can com-
pute the likelihood for any given example, 
showing how likely the given example 
can be in the class in question. A standard 
probabilistic model for time-series data 
or sequences is the hidden Markov model 
(HMM), which has been used in a lot of 
applications, including speech recogni-
tion,[12] natural language processing[13] and 
analyzing biological sequences, e.g. amino 
acid sequences.[14] A HMM can be defined 
by a state transition diagram, in which 
states are connected by edges. A HMM 
(or its state transition diagram) has two 
types of probability parameters, one being 
letter generation probabilities attached to 
states to generate letters, i.e. amino acid 
types, and the other being state transition 
probabilities attached to edges. A standard 
assumption on the Markov process is the 
first-order Markov property, which is very 
simple for sequences and means that the 
current state depends upon only one state 
away. Thus given a sequence, we can just 
repeat the following two steps, from left 
to right on the sequence: we first generate 
the corresponding letter, i.e. amino acid, at 
a state with a letter generation probability 
and then transit to another state with a state 
transition probability.

Using these probabilities, we can com-
pute the likelihood that a given sequence 
is generated under a HMM (or its state 

transition diagram). Training (or learning) 
probability parameters of HMM is usu-
ally based on maximum likelihood, which 
means that probability parameters are es-
timated so that the likelihoods of given 
sequences are maximized. There are a va-
riety of extensions of HMMs, major ones 
being context free grammars[15] and tree 
grammars[16] to deal with complex depen-
dencies in sequences. Another direction is 
for trees, the first trial being the hidden tree 
Markov model (HTMM)[17] in which left-
to-right on a sequence is simply applied to 
parent-to-child over a tree. This model can 
be applied to glycans. However, glycans 
are rooted directed ordered trees, while 
ordered children are not considered in HT-
MM at all. Thus the ordered tree Markov 
model (OTMM)[18,19] and the probabilis-
tic sibling-dependent tree Markov model 
(PSTMM)[20,21] have been developed for 
glycans. 

Fig. 1 shows the difference between 
HTMM, OTMM and PSTMM. Fig. 1 (a) 
shows a sample rooted directed ordered 

(a): Sample rooted directed ordered tree (b): Probablistic dependencies of HTMM

(c): Probablistic dependencies of OTMM (d): Probablistic dependencies of PSTMM

Figure 1: (a) A sample rooted directed ordered tree and probabilistic dependencies of (b) HTMM,
(c) OTMM and (d) PSTMM.

Fig. 1. (a) A sample rooted directed ordered tree and probabilistic dependencies of (b) HTMM,  
(c) OTMM and (d) PSTMM
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Fig. 2 shows the top five patterns ob-
tained by running this approach over all 
glycans in a glycan database, revealing 
that each of the five patterns corresponds 
to a known, conserved pattern of glycans. 
Furthermore you can see that these pat-
terns are not ranked by their supports but 
by their p-values.

Obtained patterns can be used to gen-
erate a binary feature vector of each gly-
can, by assigning 1 to a feature if this 
glycan has the pattern corresponding to 
this feature; otherwise zero. We can then 
apply these feature vectors to a classifica-
tion problem of glycans by using a linear 
kernel and SVM. Fig. 3 shows the perfor-
mance (shown by AUC, Area Under the 
ROC curve, a standard measure in machine 
learning) of this approach (displayed by 
‘Proposed Method’), outperforming those 
using three well-known tree kernels. This 
result shows that patterns are very useful 
even for classification, mainly because pat-
terns are obtained from given data, mean-
ing that patterns can be changed depending 
upon given data while tree kernels cannot.

Finally Table 1 shows a summary of da-
ta mining techniques for glycans or rooted 
directed ordered trees which we have intro-
duced in this review.

model for glycans. However we need to 
think about other points, such as com-
putational complexity of probabilistic 
models. HTMM is a simple modification 
of HMM from left-to-right to parent-to-
child, meaning that these two models 
share the same time and space complexi-
ties, which is roughly O(n3) where n is the 
size of given sequences or trees and the 
state transition diagram is assumed to be 
the complete graph. This good property of 
HTMM is also shared by OTMM, which 
also keeps the same complexities. How-
ever, the time and space complexities of 
PSTMM are higher and roughly O(n4). 
This difference is computationally sig-
nificant, because the state transition dia-
gram can be a left-to-light one by which 
the complexity of OTMM can be O(n2) 
but PSTMM must keep O(n3). Another is-
sue is that the number of glycans we can 
have is always relatively small, meaning 
that a complex model is likely to overfit to 
training data. In fact, ref. [19] shows that 
the predictive performance of PSTMM 
is high for training data but very low for 
test data, while that of OTMM is high for 
both training and test data, because the 
high complexity of PSTMM makes this 
model overfit to the training data. These 
results imply that OTMM is the most ap-
propriate probabilistic model for glycans. 
On the other hand, PSTMM was applied 
to aligning multiple glycans by modifying 
it into a model called ProfilePSTMM,[22] 
which is a similar modification of HMM 
to ProfileHMM. This modification reduc-
es the complexity of the original PSTMM 
by which ProfilePSTMM can avoid the 
overfitting issue.

2.3 Mining Frequent Subtrees
Classification and clustering are very 

useful in that they can give some infor-
mation to examples. On the other hand, 
if classifiers or probabilistic models are 
complex, it is hard to obtain any rules from 
given examples. Mining frequent patterns 
is useful to find rules or patterns embed-
ded in given examples, and these obtained 
patterns can further work for classifica-
tion and clustering. Thus mining frequent 
patterns have been developed for different 
types of examples, such as items,[8] trees[23] 
and graphs.[8] Here we focus on trees or 
glycans, and in fact, conserved patterns 
have already been reported in glycans,[24] 
implying that similar subtree patterns 
could still be hidden and not yet found. 
Given a set of trees, the number of trees 
having a certain subtree is called the sup-
port of the subtree. A subtree is frequent 
if its support is equal to or higher than a 
prefixed number, which is called minimum 
support or minsup. In general, we can have 
a huge number of frequent subtrees, which 
are at the same time redundant, since if a 

subtree is frequent, its all subtrees are fre-
quent. This means that frequent subtrees 
are sometimes so small and meaningless. 
To overcome these issues in mining fre-
quent subtrees, we present a new method, 
which has two important features: 1) con-
trolling the number of outputted frequent 
subtrees and 2) using hypothesis testing to 
output only significant subtrees.[23] That 
is, we first reduce the number of frequent 
subtrees by step 1 and then remove mean-
ingless frequent subtrees by step 2. Step 
1 was realized by the concept, called a-
closed frequent subtrees, which means 
that a frequent subtree T is not outputted 
if the support of its supertree is larger than 
or equal to a × the support of T, where a 
takes a value between zero and one. That 
is, the intuitive idea of a-closed frequent 
subtrees is that frequent subtree T is not 
outputted if the support of its supertree has 
a value similar to the support of T. Step 2 
needs a control dataset, which is for exam-
ple randomly generated, and the support of 
frequent subtrees in the control dataset is 
computed. Step 2 then runs Fisher’s exact 
test to retrieve only the frequent subtrees, 
which appear well in the given dataset but 
not so frequently in the control dataset. 
Final results are ranked by p-values of 
Fisher’s exact test. 
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Table 1.

Technique References

Supervised learning: kernel-based method
Glycan kernel [11]

Unsupervised learning: probabilistic-models
OTMM
PSTMM
Profile PSTMM

[20,21]
[18,19]
[22]

Frequent pattern mining
Frequent subtree mining [23]

3. Conclusion

We have shown three types of problem 
settings in data mining and latest tech-
niques for glycans or rooted directed or-
dered trees in each type. We have further 
shown that the techniques are proved to be 
useful for real glycans. In particular, min-
ing frequent patterns obtained well-known 
patterns embedded in a glycan database 
automatically and the obtained patterns 
outperformed SVMs with tree kernels in 
a supervised learning setting. This implies 
that using frequent patterns is very useful 
and promising to further explore data min-
ing approaches for glycans. 
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