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Glycosidases in Carbohydrate Synthesis: 
When Organic Chemistry Falls Short
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Abstract: Thanks� to� the�stability,�good�availability,�stereoselectivity�and�broad�substrate�specificity,�oligosac-
charide�synthesis�catalyzed�by�glycosidases� represents�an�elegant�way� to�complex�carbohydrate�structures.�
Two�approaches�to�glycosidase�catalysis�are�presented:�i)�the�use�of�structurally�modified�substrates�that�carry�
various�functional�moieties�in�the�molecule,�and�ii)�the�design�of�mutant�glycosidases�void�of�hydrolytic�activity.�
Products�of�glycosidase-catalyzed�synthesis�are�applicable�in�a�range�of�areas�such�as�immunology,�therapy�of�
Alzheimer’s�or�Parkinson’s�diseases�and�the�synthesis�of�neoglycoproteins.
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1. Introduction

Oligosaccharide synthesis is tradition-
ally accomplished by methods of organic 
chemistry;[1] however, this approach has 
one serious drawback: a vicious circle of 
protection-deprotection steps, which of-
ten result in a dramatic decline in reac-
tion yields and time-cost efficiency. For 
instance, the yield of a chemical synthesis 
of sialyl dimeric Lex,[2] a complex hepta-
saccharide, is less than 1%, despite the fact 
that most of the individual reaction steps 
are quantitative. In such cases, enzymatic 
synthesis represents a welcome alterna-
tive. Carbohydrate-processing enzymes 
fall into two classes: glycosyltransferases 
and glycosidases. The former enzymes, 
though favored in carbohydrate synthe-
sis due to their absolute selectivity,[3] fre-
quently encounter the problem of limited 
stability and availability. Another negative 
point is the high cost of their substrates: 
nucleotide sugars. In this review, we aim to 
introduce glycosidases, original hydrolytic 
enzymes, as potent synthetic tools in many 
applications. 

The first glycosidase-catalyzed synthe-
sis dates back to the end of the 19th cen-
tury.[4,5] A systematic study of glycosidases 
as synthetic devices did not happen until 
the 1950s when b-fructofuranosidases,[6] 
a-[7] and b-glucosidases[8] as well as a-[9] 
and b-galactosidases[10] were successfully 
applied in the preparation of disaccha-
rides. Later on, the first glycosidases were 
isolated and characterized, such as the 
pioneer b-N-acetylhexosaminidase from a 
commercial enzyme preparation Takadia-
stase®.[11] The late 1980s can be called the 
golden era of glycosidases, connected with 
the groups of Nilsson,[12] Fujimoto and Aji-
saka,[13] Larsson and Mosbach,[14] and oth-
ers. Nowadays, the emphasis is on highly 

selective reactions with mutant enzymes 
or derivatized substrates, not seldom with 
direct medicinal or biotechnological ap-
plications. Fig. 1 shows the development 
of three main areas concerning the ap-
plication of glycosidases in carbohydrate 
chemistry. 

2. Fundamentals of Glycosidase 
Catalysis

Glycosidases (O-glycoside hydrolases; 
EC 3.2.1.-) cleave saccharidic chains in 
vivo by transfering a glycosyl moiety to a 
water acceptor. Under certain conditions, 
this strategy can be reversed: other mol-
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Fig.�1.�Use�of�glycosidases�in�the�period�1981–2010.�Publications�on�three�areas�of�glycosidase�
application�(i.e.�carbohydrate�processing,�purification�&�characterization,�and�mutant�glycosidases�
in�synthesis)�were�monitored�over�the�given�timespan.�Source:�Web�of�Science�database�(http://
isiknowledge.com/).
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3. Tailored Substrates – Building 
Blocks of Target Saccharides

The sturdy, easy-to-handle and readily 
available glycosidases are a potent tool for 
a green one-step synthesis of oligosaccha-
rides, provided that the problem of reaction 
regioselectivity is overcome. This may be 
resolved by a careful selection of enzyme 
source coupled with an ingenious design of 
both glycosyl acceptors and donors.

3.1 Glycosylation of Complex or 
Sensitive Compounds

Attachment of a sugar unit(s) to an agly-
cone may increase its stability or/and wa-
ter solubility, which is especially important 
for pharmaceutical preparations. A classi-
cal example is the galactosylation of chlor-
phenisin and chloramphenicol antibiotics 
by Aspergillus oryzae b-galactosidase.[22] 
Chemical glycosylation of ergot alkaloids 
has not been reported so far, probably due 
to the complexity and sensitivity of these 
compounds.[23,24] Alkaloid glycosides ob-
tained by glycosidase-catalyzed glycosyl-
ation are expected to be good prodrugs 
with improved pharmacokinetic properties 
(e.g. glucopyranosides easily passing the 
hemato-encephalitic barrier). Alcohols, 
including l-serine,[25] are common sub-
strates for enzymatic glycosylations.[17] 
Secondary alcohols are glycosylated 3–5 
times more slowly than the respective 
primary counterparts[26] and tertiary al-
cohols are even poorer substrates.[27,28] 

Glycosidases can also be applied to create 
difficult-to-prepare glycosidic linkages, 
such as b1,4-mannosidic bond (endo-b-
mannosidase from Lilium longiflorum)[29] 
or Gal-a1,4 linkage (a-galactosidase from 
Bifidobacterium breve).[30] 

3.2 Functionalized Substrates Ex-
ploit Enzyme Natural Potential

Thanks to their undemanding substrate 
specificity, many glycosidases are able 
to utilize specifically functionalized sub-
strates as illustrated in Fig. 2. Glycosyl 
donors like nitrophenyl glycosides suffer 
from several flaws, such as limited solubil-
ity (especially in combination with other 
hydrophobic groups in the molecule), a 
notable ratio of autocondensation products 
(nitrophenyl disaccharides) in the reaction 
mixture, and a difficult purification of the 
released nitrophenol. Therefore, glycosyl 
donors with other leaving groups have 
been proposed such as 3-nitro- (1) and 
5-nitro-2-pyridyl glycosides,[31] vinyl gly-
cosides (2),[32] 1-O-acetyl glycosides (3)[33] 

and oxazoline derivatives (e.g. 4).[34] The 
latter structures mimic reaction intermedi-
ates in the mechanism of substrate-assisted 
catalysis[21] (Scheme 1C).

Glycosyl fluorides are widely used 
with glycosynthases (Scheme 3; C–F bond 

ecules possessing an acceptor hydroxyl 
group are found more attractive than wa-
ter and a new glycosidic bond is formed. 
This happens if the activity of water is 
diminished by, e.g. high reactant concen-
trations,[15] addition of salts,[16] organic 
solvents or by elimination of the reaction 
product.[13] If glycosyl donor is a reducing 
sugar, the synthetic process is under ther-
modynamic control and is called ‘reverse 
hydrolysis’. In this case, yields are gener-
ally below 15%.[17] A more popular reac-
tion system under kinetic control employs 
glycoside donors activated by a good leav-
ing group, such as p-nitrophenyl. This so-
called ‘transglycosylation’ affords higher 
yields[18] of 20–40%.

The sub-subclass of glycosidases com-
prises 154 entries in the IUBMB enzyme 
nomenclature system (International Union 
of Biochemistry and Molecular Biology, 
status from July 14, 2010). Another source 
of information on the variety of glycosi-
dases is the CAZy database (Carbohydrate 
Active Enzymes, http://www.cazy.org/), 
founded by Henrissat at the onset of the 
1990s.[19] This classification system is 
based on amino acid sequences and divides 
glycosidases into over 100 families.[20]

As a result of a glycosidase-induced 
cleavage,[21] the new glycosidic bond either 
retains the same anomeric configuration 

(retaining enzymes) or inverts it to form 
the other anomer (inverting enzymes). In-
verting glycosidases (Scheme 1A) act by a 
one-step, single-displacement mechanism 
with acid/base assistance (normally by ac-
tive-site Glu and Asp). Retaining enzymes 
(Scheme 1B), which often exhibit synthet-
ic potential, act via a double-displacement 
mechanism involving a covalent glycosyl-
enzyme intermediate. In the first step (gly-
cosylation), the nucleophilic carboxylate 
displaces the aglycon to form the glycosyl-
enzyme intermediate, which is facilitated 
by acid-catalyzed departure of the leaving 
group mediated by the other residue. In the 
second step (deglycosylation), the glyco-
syl enzyme is hydrolyzed by an incoming 
nucleophile, with the other residue now 
acting as a base catalyst that activates the 
nucleophile for the attack. Glycosidases of 
families 18, 20, 25, 56, 84, and 85 process 
substrates with a 2-acetamido moiety. This 
moiety acts as an intramolecular nucleo-
phile and instead a covalent glycosyl en-
zyme, an oxazolinium ion is the reaction in-
termediate (Scheme 1C). Other mechanis-
tic modifications have been reviewed.[20,21] 
Mutant glycosidases utilize somewhat al-
tered reaction mechanisms, which are re-
ported on below. 
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Scheme�1.�Hydrolytic�
mechanisms�of�wild-
type�glycosidases.�
Inverting�glycosidases�
(A)�act�by�a�single-
step,�mechanism,�with�
a�single�inversion�at�
the�anomeric�centre,�
shown�in�a�green�
circle.�The�catalytic�
carboxylates�are�shown�
in�blue�(acid-base)�
and�pink�(nucleophile).�
Retaining�glycosidases�
(B)�act�through�a�
double-displacement�
mechanism�(double�
inversion�at�the�
anomeric�centre).�b-N-
Acetylhexosaminidases�
(C)�utilize�a�modified�
retaining�mechanism,�in�
which�the�nucleophilic�
attack�is�not�performed�
by�the�enzyme�residue�
but�by�the�substrate�
2-acetamido�group,�
forming�an�oxazoline�
intermediate.�R�=�
saccharide�or�alcohol.
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4-O-sulfate 11, and 3-O-sulfate) and their 
cleavage by sulfatases and fungal b-N-
acetylhexosaminidases.

Fluoroglycosides[35] inhibit glycosidas-
es. Consequently, these compounds serve 
as mechanism-based indicators for active-
site labeling in particular 2,4-dinitrophenyl 
2-deoxy-2-fluoro-b-d-glycoside,[47] 2-de-
oxy-2-fluoro-b-d-glycosyl fluoride,[48] and 
5-fluoro-d-glycosyl fluorides.[49]

Glycosidases exhibit quite a high toler-
ance to modifications of the C(4) position 
(e.g. 12). For b-N-acetylhexosaminidases 
(GH family 20), the cleavage of both gluco- 
and galacto-configurations, though at dif-
ferent ratios,[50] is a typical feature.[28,51,52] 

C(2) hydroxyl and its modifications have 
a special importance for enzymes using the 
substrate-assisted hydrolytic mechanism, 
such as b-N-acetylhexosaminidases.[21c] The 
acetamido group is crucial for stabilization 
of the oxazoline reaction intermediate and 
therefore, it cannot be much altered with-
out a substantial decline in enzyme activity. 
Nevertheless, changes to shorter or longer 
acyls or substitution by a hydroxyl (13–15) 
are tolerated, contrary to highly electro-
negative or charged moieties.[53] Substrates 
modified at the C(2) position have recently 
been applied with transsialidases[54] as well 
as a-l-arabinofuranosidases.[55]

4. Mutant Glycosidases – High-
power Synthetic Engines

4.1 Glycosynthases
Glycosynthases, site-directed mutants 

of glycosidases, were invented in 1998[56] 
and their appearance smashed all existing 
rules on the role of glycosidases in carbo-
hydrate synthesis. Ingeniously simple, if 
the active-site catalytic nucleophile (Asp 
or Glu) is mutated to a non-nucleophilic 
residue like Ala, the resulting mutant be-
comes hydrolytically inactive but it can 
transfer a suitably activated sugar donor 
(e.g. a glycosyl fluoride) onto acceptors 
with nearly quantitative yields (>80%) 
(Scheme 3). A typical acceptor is an aryl 
glycoside that binds well to the active site 
but cannot be cleaved by itself.[35,57]

The first glycosynthase originated from 
the b-glucosidase from Agrobacterium sp., 
which is a remarkable catalyst even in wild 
type.[58] It served as a model enzyme for 
optimization of glycosynthetic abilities. 
Three mutations were introduced into this 
enzyme: Glu358Ala,[59] Glu358Ser,[60] and 
Glu358Gly.[61] In this order, an enhance-
ment of catalytic activity was observed in 
the mutants as manifested by higher yields, 
increased reaction rate, and a broader 
choice of acceptors (however, this order 
may not be as strict as shown in ref. [62]).

Recently endo-glycosynthase,[63] a-
glycosynthases,[64] and thermophilic gly-

cleaved).[35] Although their stability in 
H

2
O is limited, they are very efficient due 

to the small size of fluorine, its easy de-
tection by 19F NMR, and its high electron-
withdrawing effect. Glycosyl azides (e.g. 
5)[36] (C–N bond cleaved) are good alter-
native substrates especially for N-acetyl-
d-hexosamines, the fluorides of which are 
unstable. They have also been used with 
b-galactosidases, b-glucosidases, a-man-
nosidases[37] and thioglycoligases.[38]

Protecting the primary hydroxyl of the 
acceptor polyol as an acetate, e.g.[39] en-
hances the reaction regioselectivity; thus, 
the synthesis is likely to be directed to 
C(4) (gluco-substrates) or C(3) positions 
(galacto-substrates). A large number of 
modifications at C(6), including substitu-
tions by, e.g. aldehyde, methyl, carbene, 
carbyne or fluorine, have been studied in-
cluding for b-galactosylations by Wong,[40] 
MacManus,[41] and Hušáková (e.g. 6).[39c] 
Weingarten and Thiem[42] also developed 
this topic by presenting nine C(6) modified 
glycosides (e.g. 7, 8) as potential substrates 
for the b-galactosidase from Bacillus circu-
lans. An elegant reaction sequence starting 
from p-nitrophenyl 2-acetamido-2-deoxy-
b-d-galacto-hexodialdo-1,5-pyranoside 
(9) yielded immunoactive oligosaccha-

rides in one pot (Scheme 2).[43] After enzy-
matic glycosylation, the aldehyde moiety 
is oxidized chemically to a carboxyl, the 
carrier of the immunomodulation poten-
tial. These structures are strong ligands of 
the activation receptors of human natural 
killer cells that are potentially applicable 
in the treatment of cancer.[43] The origi-
nated N-acetyl-b-d-galactosaminuronates 
are all the more interesting because such 
structures are quite difficult to prepare 
chemically[44] and no specific transferases 
for N-acetyl-b-d-hexosaminuronates have 
been reported up to date.

Another widely studied substrate 
modification is sulfation. Sulfated oligo-
saccharides are vital in many natural pro-
cesses, such as cell-cell adhesion, homing 
of lymphocytes, binding of bacteria, and 
hormone regulation. The pioneer experi-
ments were performed with the b-galacto-
sidases from B. circulans and E. coli and 
4-methylumbelliferyl 6-sulfo-b-d-galacto-
pyranoside donor (10).[41] Glycosylations 
with 6-O-sulfo-N-acetyl-d-glucosaminyl 
moiety was demonstrated in several recent 
works.[45] Loft and Williams[46] published 
challenging syntheses of regioselectively 
sulfated p-nitrophenyl 2-acetomido-2-
deoxy-b-d-glucopyranosides (6-O-sulfate, 

Modification at Modified substrates

C-1

O
HO

HO
OH

OH

O

N O
HO

HO
OH

OH

O

O
HO

HO
OH

OH

O

O

O

N
O

OHO
HO

NHAc

OH

N3

C-2 OHO
HO

NHR

OH

O

NO2

NO2

R
13 -CHO
14 -COCH2OH
15 -COCH2CH3

C-4

O
HO

HO
OH

OSO3-

O

O
HO

NHAc

OH

O

C-6

O O
O

HO

HO
NHAc

OH

O

NO2
OH

1 2

4

3 5

O
CH3

HO

HO
OH

O

NO2
O

HO

HO
OH

O

NO2

7 8

109

12

O
HO

NHAc

OH

O

11

-O3SO

NO2

HO

HO
O

OHO
HO

NHAcHO

H

H

H

OHO
HO

NHAc
O

NO2

6

O
O

Kren-fig-2
Fig.�2.�Overview�
of�modified�
substrates�used�in�
transglycosylation�
reactions�catalyzed�by�
glycosidases.

C-(1)

C-(2)

C-(4)

C-(6)



68� CHIMIA�2011,�65,�No.�1/2� Glycochemistry today

cosynthase[65] mutants with altered substrate 
specificity have been obtained. An example 
is the xylosynthase derived from Agro-
bacterium sp. b-glucosidase.[66] Tolborg et 
al.[67] reported on the first synthesis using 
a glycosynthase on solid phase, namely on 
poly(ethylene glycol) polyacrylamide co-
polymer. Quantitative glucosylations were 
catalyzed by Glu358Ser and Glu358Gly b-
glucosidase from Agrobacterium sp. A great 
variety of glycosyl acceptors were tested 
with the hyperthermophilic glycosynthase 
from Sulfolobus solfataricus.[68] The poten-
tial of glycosynthases was demonstrated in 
a number of challenging syntheses, such as 
the preparation of glycosphingolipids, pos-
sibly useful in the therapy of Parkinson’s 
and Alzheimer’s diseases,[69] or the glyco-
sylation of flavonoids with immunomodu-
lation effect.[70] A number of alcohols can 
be glucuronylated by a glucuronyl synthase 
derived from Glu504Gly b-glucuronidase 
from E. coli.[71]

A novel concept in glycosynthase tech-
nology was presented by Honda et al. – they 
prepared the first glycosynthase from the 
reducing end xylose-releasing exo-oligo-
xylanase from Bacillus halodurans, which 
is an inverting glycosidase. Two active-site 
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Scheme�3.�Reaction�
mechanisms�of�
mutant�glycosidases.�
Glycosynthase�(A),�
in�which�the�catalytic�
nucleophile�Glu�was�
mutated�to�Ala,�uses�
fluoride�of�the�opposite�
anomeric�configuration�
as�a�donor.�The�only�
inverting�glycosynthase,�
Tyr198Phe�xylanase�
from�Bacillus�halodurans�
(B),�can�glycosylate�
using�a�fluoride�donor�
with�negligible�side�
hydrolysis�due�to�the�
mutation�of�water-
stabilizing�Tyr198�to�
Phe.�Thioglycoligase�
(C),�in�which�the�
catalytic�acid-base�
Glu�was�mutated�to�
Ala,�uses�reactive�
2,4-dinitrophenyl�
glycoside�donors�
and�nucleophilic�
thiosugar�acceptors.�
Double�mutant�
thioglycosynthase�(D),�
with�the�catalytic�acid-
base�Glu�mutated�to�
Ala�and�the�catalytic�
nucleophile�Glu�mutated�
to�Gly,�uses�inverted�
glycosyl�fluoride�
donors�and�thiosugar�
acceptors.�R�=�aglycon,�
e.g.�p-nitrophenyl.
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mutations were studied, Asp263Cys[72] 
(catalytic base residue), and Tyr198Phe.[73] 
By mutating the general base Asp263 to 
Cys, the hydrolytic activity was consider-
ably diminished but so was the F– releasing 
activity. By mutating the water-stabilizing 
residue Tyr198 to Phe, the F– releasing 
activity was slightly increased compared 
to the wild-type whereas the hydrolyzing 
activity was drastically reduced. Thus, 
Tyr198Phe is a better inverting glycosyn-
thase than the mutant of the base residue. 
(Scheme 3). 

Umekawa and coworkers[74] pre-
pared the first glycosynthase from a gly-
cosidase exercising substrate-assisted 
catalytic mechanism. In the endo-b-N-
acetylglucosaminidase from Mucor hie-
malis, the Asn175 residue, critical for 
stabilizing the oxazoline reaction inter-
mediate, was mutated to Ala. The result-
ing mutant is unable to hydrolyze any ac-
tivated substrates but it can quantitatively 
transfer oxazoline donors (Scheme 4).[73] 
Other attempts have previously been made 
to suppress hydrolytic activity by mutating 
other residues than catalytic nucleophile, 
with variable results. A noteworthy exam-
ple is the introduction of transsialidase ac-
tivity into hydrolyzing-only Trypanosoma 
rangeli sialidase by six site-directed muta-
tions, selected by comparison to Trypano-
soma cruzi transsialidase.[75]

4.2 Thioglycoligases and Thiogly-
cosynthases

The substitution of the acid/base cata-
lytic residue by another amino acid, mainly 
Ala and Gln, changes a retaining glycosi-
dase into a thioglycoligase[76] (Scheme 3). 
These enzymes process activated donors, 
such as dinitrophenyl glycosides, with thi-
ol acceptors. Thiosugars are strong nucleo-
philes that do not need activation by the ac-
id/base catalytic residue to form the glyco-
sidic linkage. Therefore, they are optimum 
acceptors for thioglycoligases, in which this 
residue is substituted, contrary to wild-type 
enzymes. The pioneer thioglycoligases, 
the Glu171Ala b-glucosidase from Agro-
bacterium sp. (b-thioglucoligase) and the 
Glu429Ala b-mannosidase Man2A from 
Cellulomonas fimi (b-thiomannoligase)[76] 
glycosylate thiosugars with up to 80% 
yields. An improved thioglycoligase was 
designed by Müllegger et al. by saturation 
mutagenesis; the Glu170Gln b-glucosi-
dase from Agrobacterium sp. used b-d-glu-
copyranosyl azide as a glycosyl donor.[38] 
The same research group constructed the 
thermostable b-thioglucuronoligase from 
Thermotoga maritima[62] and used the thio-
glycoligase from Agrobacterium sp. for 
thioglycosylation of glycoproteins.[77] Kim 
et al.[78] created a library of thioglycosides, 
potential chaperones of lysosomal glycosi-
dases, under catalysis by the b-thiogalacto-

ligase from Xanthomonas manihotis. The 
thioglycoligase concept was further ex-
tended to thioglycosynthases, double mu-
tants of retaining glycosidases. These en-
zymes lack both the catalytic nucleophile 
and the acid/base residue and they require 
a combination of a glycosyl fluoride donor 
and thiol acceptors[79] (Scheme 3).[57]

Thioglycoligases and thioglycosyn-
thases are the only catalysts that can reli-
ably synthesize thioglycosides – and these 
exclusively as b-anomers. Although some 
glycosidases, e.g. O-GlcNAcase (b-N-
acetylglucosaminidase),[80] can efficiently 
cleave thioglycosides, there are no reports 
on the enzymatic synthesis of thiosugars. 
If so, they encompass solely simple thiols, 
such as thiopropane[81] or 2-mercapto-
ethanol.[82] Interestingly, the 6-phospho-
b-glucosidase from Thermotoga maritima 
(GH 4, http://www.cazy.org/) can naturally 
cleave thioglycosides with a rate similar 
to that of corresponding O-glycosides.[83] 
This is probably because it uses a redox-
elimination-addition catalytic mechanism 
that employs anionic transition states[21b] 
and not the classical retaining mechanism 
as described in Section 2. Thus, members 
of GH family 4 could become alternatives 
to thioglycoligases and thioglycosynthases 
in the preparation of thiosugars.

4.3 Transglycosidases
Through directed evolution[84] a library 

of randomly created mutant proteins is 
(automatically) screened for the required 
property. The best variants may then be 

further mutated and repeatedly screened 
to accumulate positive mutations. Con-
trary to glycosynthases, transglycosidases 
created by random mutagenesis process 
classical glycosyl donors (aryl glycosides) 
and they are still able to synthesize self-
condensation products. For instance, the 
introduction of a double-mutation into the 
b-glycosidase from Thermus thermophi-
lus resulted in a transglycosidase with a 
significantly improved transglycosylation 
performance.[85] In E. coli b-galactosidase, 
six random mutations induced a complete-
ly new b-d-fucosidase activity.[86] 

5. Conclusion

The increasing need for complex gly-
costructures has stimulated great advances 
in glycosidase research, including new ac-
tivities of glycosynthases as well as the use 
of ingeniously modified glyosidase sub-
strates. Glycosidase catalysis is a simple, 
adaptable an green alternative.
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Křen, Biotechnol. Lett. 1997, 19, 869.

[17]  F. van Rantwijk, M. Woudenberg-van Oosterom, 
R. A. Sheldon, J. Mol. Catal. B: Enzym. 1999, 
6, 511.

[18]  L. Hedbys, P.-O. Larsson, K. Mosbach, S. 
Svensson, Biochem. Biophys. Res. Commun. 
1984, 123, 8.

[19]  B. Henrissat, Biochem. J. 1991, 280, 309.
[20]  B. L. Cantarel, P. M. Coutinho, C. Rancurel, 

T. Bernard, V. Lombard, B. Henrissat, Nucleic 
Acids Res. 2009, 37, D233; Carbohydrate-
Active EnZymes server at URL: http://www.
cazy.org/

[21]  a) S. G. Withers, Carbohydr. Polym. 2001, 44, 
325; b) D. Vocadlo, G. J. Davies, Curr. Opin. 
Chem. Biol. 2008, 12, 539; c) K. Slámová, P. 
Bojarová, L. Petrásková, V. Křen, Biotechnol. 
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[23]  V. Křen, Top. Curr. Chem. 1997, 186, 45.
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