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Abstract: Azidoproline (Azp) containing oligoprolines are conformationally well-defined, helical molecular scaf-
folds that allow for facile functionalization. Within this article we describe the synthesis of Azp-containing oli-
goprolines and different strategies to introduce functional moieties. In addition, the influence of factors such as 
substituents at the γ-position of proline as well as functional groups at the termini on the conformational stability 
of the molecular scaffolds are briefly presented. 
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1. Introduction 

Functionalizable, conformationally well-
defined helical structures have become 
important as molecular scaffolds for appli-
cations ranging from the development of 
cell-penetrating peptides,[1] antibiotics,[2] 
and inhibitors of protein–protein interac-
tions[3] to the design of new materials.[4] 
Oligoprolines are interesting in this respect 
since they adopt already at short chain 
lengths of six residues the conformational-
ly well-defined polyproline II (PPII) helix 
in aqueous environments.[5–9] This second-
ary structure is widespread in nature and a 
highly symmetrical helix where every third 
residue is stacked on top of each other with 
a pitch of ~9.5 Å.[7,8] A further attractive 
feature of oligoprolines is the possibility to 
switch between the PPII and another heli-
cal conformation, the polyproline I (PPI) 
helix, by changing the solvent.[7,9] Oligo-
prolines adopt the left-handed PPII helix 
with all amide bonds in trans conforma-

tions in aqueous solution, whereas a switch 
to the more compact right-handed PPI he-
lix with all amide bonds in cis conforma-
tions occurs in more hydrophobic solvents 
like n-PrOH (Fig. 1a).[7–9] 

This special feature of oligoprolines 
originates from the unique properties of 
proline (Pro) amongst the proteinogenic 
amino acids. The cyclic nature of Pro com-
bined with the secondary amine leads to 
constrained dihedral angles and a tertiary 
amide in the peptidic backbone. Where-
as trans amide bonds are energetically 
strongly favored within secondary amide 
bonds, the cis conformation is populated 
to a significant extent in the tertiary amide 
bonds of Xaa-Pro motives.[10]

Our group has introduced 4-azido
proline (Azp) containing oligoprolines as 
conformationally well-defined functional-
izable molecular scaffolds.[11–14] Incorpo-
ration of Azp residues into oligoprolines 
introduces sites for further functionaliza-
tions at defined positions. For example, 
oligoprolines with Azp residues in every 
third position provide for functionalizable 
sites in distances of 9.5 Å (Fig. 1b).[11] 
Herein we describe the synthesis of 
Azp-containing oligoprolines and differ-
ent strategies to functionalize them. In 
addition, the influence of factors that in-
fluence the conformational stability of the 
oligoproline-based scaffold are briefly dis-
cussed.[15,16]

Fig. 1. a) Models of the PPII helix with all trans amide bonds (top) and the PPI helix with all cis 
amide bonds (bottom). b) Model of a PPII helix of an oligoproline with Azp residues at every third 
position.
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phosphate (HCTU) or 2-(7-aza-1H-benzo-
triazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate (HATU) and Hünig’s 
base proved valuable as coupling reagents. 
Oligomers up to a length of nine residues 
were readily prepared by alternating pep-
tide coupling with Fmoc-deprotection 
(20% piperidine in DMF) steps using ei-
ther Rink amide or chlorotrityl linkers to 
polystyrene or TentaGel solid supports. 
Using this standard SPPS protocol, oligo-
prolines such as the 9-mer 7, were obtained 
after acid-induced cleavage from the solid 
supports in purities that allowed for a facile 
further purification by preparative HPLC 
(Scheme 3).[11,13]

2. Synthesis of Azp-containing 
Oligoprolines

For the synthesis of Azp-containing 
oligoprolines we envisioned either succes-
sive coupling of Fmoc-Pro-OH and Fmoc-
(4S)Azp-OH (1S) or Fmoc-(4R)Azp-OH 
(1R) using standard solid phase peptide 
synthesis (SPPS) following the Fmoc/tBu 
protocol or the coupling of dimeric or tri-
meric building blocks such as Fmoc-Pro-
(4S)Azp-Pro-OH (2S) or Fmoc-Pro-(4R)
Azp-Pro-OH (2R). The latter approach 
should in particular be valuable for longer 
sequences to avoid deletion sequences that 
might render the purification of the desired 
oligoprolines difficult. The synthesis of 
Fmoc-(4S)Azp-OH (1S) and Fmoc-(4R)
Azp-OH (1R) from commercially avail-
able t-butyloxycarbonyl (Boc) protected 
(4R)-hydroxyproline (Boc-(4R)Hyp-OH, 
3) proved straightforward (Scheme 1).[11] 

Esterification of Boc-(4R)Hyp-OH (3) fol-
lowed by activation of the hydroxy group 
as a mesylate and S

N
2 substitution with so-

dium azide yielded the azidoproline deriv-
ative Boc-(4S)Azp-OCH

3
 (5S). Hydrolysis 

of the methyl ester, removal of the Boc pro-
tecting group and reprotection of the amine 
with Fmoc-Cl under Schotten-Baumann 
conditions provided the desired Fmoc-pro-
tected azidoproline building block Fmoc-
(4S)Azp-OH (1S). To access the (4R)-
configured Azp-diastereoisomer (1R) the 
hydroxyproline derivative 4 was converted 
to a mesylate with inversion of the abso-
lute configuration at C(4) by a Mitsunobu 
reaction with methanesulfonic acid. S

N
2 

substitution with sodium azide again with 
inversion of the absolute configuration at 
C(4) yielded the N-Boc-(4R)-azidoproline 
methyl ester (Boc-(4R)Azp-OCH

3
, 5R). 

Manipulations of the protecting groups of 
the amino acid as outlined for the diaste-
reoisomer 1S yielded the Fmoc-protected 
building block Fmoc-(4R)Azp-OH (1R).

The syntheses of these Fmoc-protected 
azidoproline derivatives are easily accom-
plished on a multigram scale allowing the 
routine preparation of 10–100 g of both 
Fmoc-(4S)Azp-OH (1S) and Fmoc-(4R)
Azp-OH (1R) in a regular academic labo-
ratory. 

Also the synthesis of the trimeric 
building blocks Fmoc-Pro-(4S)Azp-Pro-
OH (2S) and Fmoc-Pro-(4R)Azp-Pro-OH 
(2R) that were envisioned for the synthe-
sis of oligoprolines with Azp residues in 
every third position was straightforward. 
Both building blocks were synthesized as 
illustrated in Scheme 2 for the example 
of Fmoc-Pro-(4R)Azp-Pro-OH (2R). Af-
ter removal of the Boc protecting group 
of Boc-(4R)Azp-OCH

3
 (5R), the result-

ing amine was coupled with Boc-Pro-OH 
using N-(3-dimethylaminopropyl)-N´-
ethylcarbodiimide hydrochloride (EDC) 

to the dipeptide Boc-Pro-(4R)Azp-OCH
3
 

(6R). Hydrolysis of the methyl ester 
of 6R and coupling with H-Pro-OMe 
yielded then the trimer Boc-Pro-(4R)
Azp-Pro-OCH

3
. Removal of the protect-

ing groups followed by Fmoc-protection 
of the resulting amine provided then the 
desired trimer building block Fmoc-Pro-
(4R)Azp-Pro-OH (2R) readily usable in 
standard SPPS.

For the synthesis of Azp-containing 
oligoprolines using the monomeric build-
ing blocks Fmoc-(4S)Azp-OH (1S) or 
Fmoc-(4R)Azp-OH (1R) on solid sup-
port, 2-(6-chloro-1H-benzotriazole-1-yl)-
1,1,3,3-tetramethylaminium hexafluoro-
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Scheme 1. Synthesis of Fmoc-(4S)Azp-OH (1S) and Fmoc-(4R)Azp-OH (1R): a) i) Cs2CO3 (0.55 
equiv.), MeOH, H2O, RT; ii) MeI (2 equiv.), DMF, RT; b) i) CH3SO2Cl (1.5 equiv.), NEt3 (3 equiv.), 
CH2Cl2, 0 °C; ii) NaN3 (5 equiv.), DMF, 80 °C; c) i) NaOH (2 equiv.), H2O, MeOH, THF, RT; ii) 4M 
HCl in dioxane (20 equiv.), RT; d) Fmoc-Cl (1.2 equiv.), NaHCO3 (2.5 equiv.), H2O, dioxane, RT; e) 
i) CH3SO3H (1.2 equiv.), PPh3 (1.8 equiv.), DIAD (2 equiv.), NEt3 (0.4 equiv.), toluene, 0 °C–70 °C; ii) 
NaN3 (5 equiv.), DMF, 80 °C.
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Scheme 2. Synthesis of the tripeptidic building block Fmoc-Pro-(4R)Azp-Pro-OH (2R): a) i) 4M 
HCl in dioxane (20 equiv.), RT; ii) Boc-Pro-OH (1.2 equiv.), EDC (1.5 equiv.), iPr2NEt (1.2 equiv.), 
CH2Cl2, RT; b) i) NaOH (1.2 eq), H2O, THF, MeOH, RT; ii) H-Pro-OCH3 (1.2 equiv.), EDC (1.5 equiv.), 
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equiv.), H2O, dioxane, RT.
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4. Factors Influencing the 
Conformational Stability of the PPII 
Helix

For applications of oligoprolines as 
molecular scaffolds a basic understanding 
of the factors that influence the structural 
stability of the PPII helix is important. 
We therefore probed the effect of func-
tional groups derived from the azide in the  
g-position (C(4)) of proline and the ef-
fects of charged versus uncharged func-
tional groups at the N- and C-termini on  
the conformational properties of oligo
prolines.[11–13,15,16] Using the solvent-in-
duced conformational switch of oligop-
rolines from the PPII to the PPI helix as 
a monitoring tool, the relative stability of 
PPII helices derived from several oligopro-
lines were evaluated. The studies revealed 
that a positive charge at the N-terminus 
and a negative charge at the C-terminus 

For the synthesis of longer oligopro-
lines, such as the 18-mer 8, the trimeric 
building block Fmoc-Pro-(4R)Azp-Pro-
OH (2R) was coupled following an iden-
tical methodology using HCTU/Hünig’s 
base as the coupling reagent.[11]

3. Functionalizability of  
Azp-containing Oligoprolines

Two strategies were envisioned for the 
functionalization of Azp-containing oli-
goprolines: a) reaction of the azides with 
alkynes using Huisgen’s 1,3-dipolar cyclo-
addition (‘click chemistry’).[17,18] and b) re-
duction of the azides to amines and further 
reaction with carboxylic acid derivatives.

3.1 Click Chemistry
To evaluate the click-chemistry ap-

proach, the 18-mer 8 with six Azp residues 
was reacted under typical ‘click chemis-
try’ conditions using methyl propiolate, 
CuSO

4
·5H

2
O and sodium ascorbate in a 

mixture of water and t-BuOH (Scheme 
4a).[11] The desired hexatriazole 9 was ob-
tained in a yield of 40% after extraction 
and precipitation. 

Whereas these click-reactions were 
performed in solution phase, function-
alization is also readily feasible with the 
Azp-containing oligoproline still bound to 
a solid support.[11,12] This strategy has the 
additional benefit that it allows for a dif-
ferential functionalization of oligoprolines 
with different moieties by alternating pep-
tide coupling and ‘click chemistry’ steps 
(Scheme 4b).[11,12]

3.2 Reduction and Amidation
Also the reduction of the azido groups 

within Azp-containing oligoprolines 
proved straightforward. For example, the 
six azido groups within the 9-mer 11 were 
readily reduced to the hexaamine using Pd 
on activated carbon in a hydrogen atmo-
sphere under acidic conditions (Scheme 
5a).[13] The resulting oligoprolines with 
six positively charged ammonium groups 
is not only interesting for the further func-
tionalization of the molecular scaffold but 
might be interesting for its cell-penetrat-
ing properties which are currently under 
investigation. Reaction of the hexaamine 
12 with activated carboxylic acids pro-
ceeded well, but also a one-pot reduction 
and acetylation of the azidoproline 9-mer 
7 to the acetamido-containing oligoproline 
13 worked well (Scheme 5b).

1) Fmoc-Pro-(4R)Azp-Pro-OHH-Pro-NH CO2Me, CuI, iPr2NEt

N

N
N

CO2Me

2)

3) DMF/Piperidin (4:1)
4) repeat 1)
5) repeat 2) with

N

N
N

CO2Me

N

N
N

Ph

Ph

NHN

O

N

O O

N N

O O

N N

O O

N N

O O

N N

O O

N

N
N

Ph

N

N
N

CO2CH3

N

N
N

N

N
N

Ph

N

N
N

CO2CH3

OCH3

N

O

N N

O O

N

O

N NH2

O

Fmoc-Pro-Pro-Pro-Pro-NH

Fmoc-Pro-Azp-Pro-Pro-NH

Fmoc-Pro-Pro-Pro-Pro-Pro-Pro-Pro-NH

HCTU, iPr2NEt, DMF DMF/THF 1:1

NN

O O

N

O

OH

O

N

6

N
N

CO2CH3

CO2CH3

H2O : t-BuOH 8:1

CuSO4•5H2O
Na ascorbate

NN

O O

N

O

OH

O

N3

68 9

RT, overnight

a)

b)

10

Scheme 4. a) 
Functionalization 
of Azp-containing 
peptide 8 to 
hexatriazole 9 by 
‘click chemistry’ 
in solution phase. 
b) Synthesis of 
the differentially 
functionalized 
oligoproline 10 by 
sequential peptide 
coupling and ‘click 
chemistry’ steps on 
solid phase.

N N N

N3

O O O

OH

O

3

N3N3
Pd/C, Ac2O,

H2 (g), MeOH

RT, 20 h
N N N

NHAc

O O O

OH

O

3

NHAcNHAc

7 13

N N N

O O O

OH

O

3

N3 N3

N N N

O O O

OH

O

3

NH3 NH3

Cl Cl

Pd/C, HCl (aq),
H2 (g), MeOH

11 12

RT, 20 h

a)

b)

Scheme 5. 
Functionalization 
of Azp-containing 
oligoprolines by a) 
reduction and b) in 
situ reduction and 
acylation.



Laureates: Awards and Honors, SCS Fall Meeting 2010� CHIMIA 2011, 65, No. 4  267

destabilize the PPII helix whereas capped 
(uncharged) termini favor the PPII helix 
relative to the PPI helix.[15] The effect of 
functional groups in the g-position of pro-
line residues depends also on the absolute 
configuration at this chiral center. (4R)-
Configured proline derivatives with elec-
tron-withdrawing groups such as azides 
at C(4) stabilize the PPII helix relative to 
the PPI helix.[11] Likewise (4S)-configured 
proline derivatives with hydrogen-bond 
donating groups such as ammonium ions 
at C(4) also stabilize the PPII helix relative 
to the PPI helix.[13] These stabilizing and 
destabilizing effects correlate well with the 
influence of the substituent and the abso-
lute configuration at C(4) on the cis:trans 
amide conformer equilibrium.[13,14] They 
can be easily monitored and analyzed in 
simpler model compounds such as the 
respective acetylated methyl esters of the 
type Ac-Xaa-OCH

3
.[11,13,14]

5. Conclusions

Azidoproline-containing oligoprolines 
are attractive molecular scaffolds since 
they allow not only facile functionaliza-
tion but adopt conformationally well-
defined helical conformations already at 
short chain lengths (≥6 residues). These 
features render Azp-containing oligo
prolines intriguing for manifold different 
applications. Our basic conformational 
studies demonstrated that the functional 
groups at the N- and C-termini as well as 
the absolute configuration of C(4) have 
to be selected carefully depending on the 

application. We are currently investigating 
the utility of appropriately functionalized 
oligoprolines as cell-penetrating peptides, 
for tumor targeting, and for the develop-
ment of semiconducting materials. In addi-
tion, the versatility of Azp residues is used 
for the development of functionalizable 
collagen model peptides.[19] 
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