doi:10.2533/chimia.2011.268

Chimia 65 (2011) 268-270 © Schweizerische Chemische Gesellschaft

Asymmetric Intramolecular Diels-Alder Reactions of Trienals Catalyzed by Chiral Ruthenium Lewis Acids

Sirinporn Thamapipol[§] and E. Peter Kündig*

§SCS DSM Prize for best poster

Abstract: Chiral single-point binding ruthenium Lewis acid catalysts [Ru(acetone)((S,S)-BIPHOP-F)(Cp)][SbF₆] ((S,S)-**1a**) and [Ru(acetone)((S,S)-BIPHOP-F)(indenyl)][SbF₆] ((S,S)-**1b**) efficiently catalyze intramolecular Diels-Alder (IMDA) reactions of trienals under mild conditions to afford the *endo* cycloaddition products as the major products in good yields with high diastereo- and enantioselectivities.

Keywords: Asymmetric IMDA reaction · Chiral catalyst · Diels-Alder · Lewis acid · Ruthenium

Cycloaddition reactions with their potential for a high degree of stereo- and regiocontrol are arguably the most versatile processes for the construction of five- and six-membered rings. Spectacular asymmetric versions have been achieved by using chiral Lewis acid catalysts.^[1] Our studies in this area focused on one-point binding chiral ruthenium Lewis acids (1a and **1b**) that are based on structurally well-defined monocationic half-sandwich complexes that incorporate a C_2 -symmetric perfluoroaryl phosphinite ligand. This ligand enforces the appropriate chiral environment around the coordination site and it also offsets the donor properties of the cyclopentadienyl- and indenyl-ligands (Fig. 1). The chiral, electron-poor ligand contributes to the Lewis acidity of these complexes, and together with the aromatic arene, generate a chiral binding site that is ideal for the activation of α , β -unsaturated carbonyl compounds.

Scheme 1. Synthesis of [Ru(acetone)((S,S)-BIPHOP-F)(Cp)][SbF_] (1a).

The synthesis of the stable iodoruthenium complex was achieved in a 'one pot' procedure from $[Ru_3(CO)_{12}]$. Significant to the success was the hydride-labilizing effect, which enabled CO substitution in the *in situ* formed $[RuCp(CO)_2H]$. Heating at reflux in acetone in the presence of iodoform afforded the chiral Ru-iodo complex, and halide abstraction by AgSbF₆ generated Lewis acid **1a** as shown in Scheme 1.^[2a]

Catalyst **1b** was synthesized *via* ligand exchange in [Ru(Cl)(indenyl)(PPh₃)₂] with BIPHOP-F to afford [Ru(BIPHOP-F)(Cl) (indenyl)]. Halide abstraction with AgSbF₆

furnished Lewis acid 1b as shown in Scheme $2.^{\left[2b\right]}$

These mild chiral Lewis acids proved to be excellent catalysts for intermolecular Diels-Alder (DA) reactions of various dienes with enals^[2] and enones,^[3] 1,3-dipolar cycloadditions of enals with nitrones^[4] and of enals with nitrile oxides^[4b,5] as shown in Scheme 3. The 1,4-addition of thiophenols to enones could also be carried out using these catalysts.^[6] Representative examples are shown in Scheme 4.

We have established details of the mode of action of these catalysts, notably the role

Scheme 2. Synthesis of [Ru(acetone)((S,S)-BIPHOP-F)(indenyl)][SbF $_{\theta}$] (1b).

Scheme 4. Examples of reactions with CpRu 1a.

of the counteranion,^[2c,d] the pendulum motion in the Ru(BINOP-F) fragment,^[2e] the competition of enals and nitrones for the Lewis acid site^[4c] and the preference of coordination of enals and vinyl ketones to the Ru-center (*anti-s-trans* vs *syn-s-trans*).^[3]

To extend the application, we probed the potential of (S,S)-1a and 1b in the intramolecular Diels-Alder (IMDA) reaction. The study involved trienes 2 (Scheme 5) and 3-7 (Scheme 6) and the results of IMDA reactions of these substrates catalyzed by (S,S)-1a and 1b were investigated.^[3,7,8] Triene 2 containing a vinyl ketone dieneophile, provided the highly enantiomerically enriched bridgehead adduct 8 in good yield.[3] Reflecting the lower reactivity of β-substituted keto-dienophiles, triene 5 failed to react. Trienals 3^[9a,b] and 4,^[9c] which were previously used in asymmetric IMDA reaction by Yamamoto, furnished the cycloadducts 9 and 10, respectively in good yields with high enantioselectivities. The Thorpe-Ingold effect from the dimethyl malonate group increased the reactivity of trienals 6 and 7 shortening reaction times, from days to hours. An X-ray structure of a derivative of 9 confirmed the tentative assignment made previously based on spectroscopic data.

The absolute configurations of products **10**, **12** and **13** were assigned by comparison of the CD spectra of the SAMP-hydrazones to that derived from **9** (Scheme 7).

X-ray structures of chiral Ru Lewis acid/substrate complexes have been instrumental for the interpretation of observed selectivities in cycloaddition reactions.[2-6] For the IMDA reaction involving triene 3 the diene approach leading to the observed endo product 9 was modeled as shown in Fig. 2. It is proposed that the enal dienophile (orange) coordinates to the Ru Lewis acid in an anti-s-trans conformation and the diene (blue) approaches the C_{α} -Reface of the enal moiety in an endo mode. The pentafluorophenyl moiety of the (S,S)-BIPHOP-F ligand blocks the Si-face (Fig. 2). This results in the observed product stereochemistry of 9.

Conclusion

We have developed efficient one-point binding Ru Lewis acid catalysts ((S,S)-1a and 1b) capable to catalyze diastereo- and enantioselectively not only DA reactions, 1,3-dipolar cycloadditions and Michael additions but also IMDA reactions. This method gives access to highly enantiomerically enriched bicyclic products of potential use in organic synthesis.

Acknowledgment

Financial support from the Swiss National Science Foundation and the University of Geneva is gratefully acknowledged.

Scheme 6. Asymmetric IMDA reactions catalyzed by (S,S)-1b (catalyst (S,S)-1a was less active, except in the case of triene 4).^[7]

Scheme 7. Synthesis of hydrazones **14–17**.

- a) 'Chiral Lewis Acid: Lewis Acids and Bases, Asymmetric Synthesis, Enantiomer, Asymmetric Induction, Lithium, Zinc, Aluminium, Boron, Diol, Racemic Mixture, Diels-Alder Reaction, Hydrocyanation, Ene Reaction', Eds. F. P. Miller, A. F. Vandome, J. McBrewster, Alphascript Publishing, **2010**; b) S. Reymond, J. Cossy, *Chem. Rev.* **2008**, *108*, 5359; c) J. Shen, C.-H. Tan, *Org. Biomol. Chem.* **2007**, *6*, 3229; d) E. J. Corey, *Angew. Chem. Int. Ed.* **2002**, *41*, 1650; e) 'Lewis acids in Organic synthesis' Ed. H. Yamamoto, Wiley-VCH, Weinheim, **2000**, vol.1.
- a) E. P. Kündig, C. M. Saudan, G. Bernardinelli, [2] Angew. Chem. Int. Ed. 1999, 38, 1220; b) E. P. Kündig, C. M. Saudan, V. Alezra, F. Viton, G. Bernardinelli, Angew. Chem. Int. Ed. 2001, 40, 4481; c) P. G. A. Kumar, P. S. Pregosin, M. Vallet, G. Bernardinelli, R. F. Jazzar, F. Viton, E. P. Kündig, Organometallics 2004, 23, 5410; d) E. P. Kündig, C. M. Saudan, F. Viton, Adv. Synth. Catal. 2001, 343, 51; e) V. Alezra, G. Bernardinelli, C. Corminboeuf, U. Frey, E. P. Kündig, A. E. Merbach, C. M. Saudan, F. Viton, J. Weber, J. Am. Chem. Soc. 2004, 126, 4843; f) M. E. Bruin, E. P. Kündig, Chem. Commun. 1998, 2635; g) E. P. Kündig, B. Bourdin, G. Bernardinelli, Angew. Chem. Int. Ed. 1994, 33, 1856
- [3] J. Rickerby, M. Vallet, G. Bernardinelli, F. Viton, E. P. Kündig, *Chem. Eur. J.* 2007, 13, 3354.

- [4] a) A. Bădoiu, G. Bernardinelli, E. P. Kündig, Synthesis, 2010, 2207; b) A. Bădoiu, Y. Brinkmann, F. Viton, E. P. Kündig, Pure. Appl. Chem. 2008, 80, 1013; c) A. Bădoiu, G. Bernardinelli, J. Mareda, E. P. Kündig, F. Viton, Chem. Asian. J. 2008, 3, 1298; d) F. Viton, G. Bernardinelli, E. P. Kündig, J. Am. Chem. Soc. 2002, 124, 4969.
- [5] Y. Brinkmann, R. J. Madhushaw, R. Jazzar, G. Bernardinelli, E. P. Kündig, *Tetrahedron* 2007, 63, 8413.
- [6] A. Bădoiu, G. Bernardinelli, C. Besnard, E. P. Kündig, Org. Biomol. Chem. 2010, 8, 193.
- [7] S. Thamapipol, G. Bernardinelli, C. Besnard, E. P. Kündig, Org. Lett. 2010, 12, 5604.
- [8] Rac-8 was a key intermediate in the synthesis of Ledol: S. L. Gwaltney, S. T. Sakata, , K. J. Shea, J. Org. Chem. 1996, 61, 7437.
- [9] a) K. Ishihara, H. Kurihara, H. Yamamoto, J. Am. Chem. Soc. 1998, 120, 6920; b) K. Ishihara, H. Kurihara, H. Yamamoto, J. Am. Chem. Soc. 1996, 118, 304; c) K. Furuta, A. Kanematsu, H. Yamamoto, Tetrahedron Lett. 1989, 30, 7231.

Fig. 2. Modelled approach of trienal **3** coordinated to Ru in (*S*,*S*)-**1b** in an *anti-s-trans* orientation (catalyst part taken from the X-ray structure of [Ru(acetone)((*S*,*S*)-BIPHOP-F) (indenyl)][SbF₆] ((*S*,*S*)-**1b**).^[2b] This model rationalizes the product's (*3aR*,*4R*,*7aS*)-configuration.