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Abstract: A thorough theoretical description of ultrafast phenomena that occur in complex systems constitutes a 
formidable challenge. It not only necessitates the use of quantum mechanical methods that can describe ground 
and possibly even electronically excited state potential energy surfaces with sufficient accuracy but also calls for 
approaches that can take the real-time dynamics of a system and the coupling between its electronic and nuclear 
degrees of freedom fully into account. Over the last years, our group has been active in the development of mixed 
quantum mechanical/molecular mechanical (QM/MM) methods for the in situ simulations of dynamical phenom-
ena in ground[1] and excited[2] states within the adiabatic (Born-Oppenheimer) approximation. Recently, we have 
extended our theoretical tools with the explicit inclusion of nonadiabatic effects in the framework of Ehrenfest 
dynamics and Tully’s fewest switches surface hopping. These extensions allow the theoretical description of 
nonadiabatic ultrafast phenomena in the gas phase as well as in solution, and complex biological environments.
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Introduction

First-principles molecular dynamics has 
become a very successful and widespread 
method for the study of chemical reactions 
that occur in the electronic ground state. 
In particular, ab initio Born-Oppenheimer 
(BO) and Car-Parrinello (CP) dynamics[3] 
are the most popular approaches designed 
for the computation of classical nuclear tra-
jectories using forces derived at a quantum 
mechanical level. Due to the prohibitively 
high computational costs of a conventional 
quantum chemical calculation based on the 
many-electron wavefunction, the potential 

energy surfaces governing the nuclear dy-
namics are usually computed using the 
density functional (DFT) formulation of 
the electronic Schrödinger equation. In this 
way, electronic energies and their nuclear 
gradients (forces) are expressed as simple 
functional of the total electronic density.

 More recently, Runge and Gross[4] pro-
posed an extension of DFT for the case of a 
system of electrons under the influence of 
a time-dependent external field. This de-
velopment, named time-dependent density 
functional theory (TDDFT), has opened 
a new avenue for first-principles studies 
of the dynamics of molecular systems in 
electronically excited states since it of-
fers a computationally affordable way for 
the calculation of excited potential energy 
surfaces (PESs) as a functional solely of 
the ground state density (or equivalently 
of the corresponding Kohn-Sham orbit-
als). However, the combination of standard 
ground state ab initio molecular dynamics 
techniques with TDDFT energies and forc-
es[5,6] turned out to be more involved than 
expected. In fact, excited state dynamics 
cannot be fully described without includ-
ing nonadiabatic effects derived from the 
quantum nature of the nuclear degrees of 
freedom. The breakdown of the BO ap-
proximation increases dramatically the de-
gree of complexity of the problem, since a 
single trajectory is in general not sufficient 
for an accurate description of the coupled 
dynamics of electrons and nuclei (with the 

exception of mean field solutions based on 
the Ehrenfest theorem). In addition, non-
adiabatic couplings (NACs) are naturally 
defined in terms of electronic wavefunc-
tions, and therefore a density functional 
representation of these quantities is re-
quired for the design of an ab initio excited 
state molecular dynamics approach based 
on TDDFT PESs.

We have recently developed the theo-
retical foundations for the calculations of 
NACs within a TDDFT framework and 
have implemented Ehrenfest and surface 
hopping dynamics in combination with 
mixed quantum mechanical/molecular me-
chanical (QM/MM) simulations enabling 
the simulation of nonadiabatic processes in 
complex systems.

Methods

Ehrenfest dynamics
The first step in the derivation of mixed 

quantum-classical dynamics consists in 
the formulation of an Ansatz for the repre-
sentation of the wavefunction of the total 
system. Depending on this choice, differ-
ent approximate mixed quantum-classical 
equations of motion can be obtained, for 
instance, the so-called Ehrenfest dynam-
ics, which makes use of a simple factor-
ization of the total wavefunction into the 
product of a fast electronic and a slow 
nuclear part, according to Eqn. (1)
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to a ‘hop’ from the ground to the excited 
state and happens when the accumulated 
amplitude in the target state induces a suf-
ficiently large probability to trigger the 
transition (see Eqn. (5)).

Applications

In the following, we briefly report 
some applications of the trajectory surface 
hopping scheme described above. These 
examples well illustrate the possibilities 
offered by this approach in the study of 
ultrafast photochemical and photophysical 
processes in the gas phase and in complex 
environments (modeled at a classical mo-
lecular mechanical level). The time and 
spatial resolution of our simulations offer 
an almost unique opportunity for the direct 
observation of photoinduced processes at 
atomistic resolution, and thus provide 
theoretical support for a mechanistic inter-
pretation of experiments in ultrafast spec-
troscopy.

Photodynamics of Oxirane
The efficiency of our implementation 

has been tested with small molecules. We 
present here the case of oxirane (ethylene 
oxide), which has been coupled to a train 
of ultrashort P-pulses depicted at the bot-
tom of Fig. 1. The population of a specific 
trajectory running on the ground state sur-
face is rapidly spread among the different 
electronically excited states (Fig. 1, upper 
panel), resulting in several electronic tran-
sitions (mid panel, Fig. 1). Interestingly, a 
longer permanence on the first electronic 
state produces, after 200 fs of irradiation, 
C–O bond dissociation of the molecule. 
Note finally that an extended statistical 
study of this phenomena requires a large 
number of independent trajectories. 

Nonadiabatic Relaxation of 
[Ru(bpy)3]

2+ in Aqueous Solution
An environmental effect that needs to 

be included in a realistic description of 
many ultrafast nonadiabatic phenomena 
is solvation. In a recent work,[16] we have 
extended the gas phase trajectory surface 
hopping (THS) to a QM/MM formalism. 
Solvent effects are therefore incorporated 
through classical molecular mechanics, 
whereas the molecule of interest is de-
scribed at a quantum mechanical level 
(using DFT for the ground state and LR-
TDDFT for the excited states). 

Using this LR-TDDFT/MM TSH meth-
odology, we have studied the nonadiabatic 
relaxation of ruthenium(II)tris(bipyridine) 
([Ru(bpy)

3
]2+) in water (Fig. 2). Ultra-

fast experiments have shown[17] that 
[Ru(bpy)

3
]2+, after photoexcitation into 

a singlet metal to ligand charge transfer 

according to
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and H
el
(r;R) is the electronic Hamiltonian 

that depends parametrically on the nuclear 
positions. The coupling with an external 
time-dependent potential can be included 
through the coupling with the electrostatic 
vector potential A(r,t).[7]

Trajectory Surface Hopping 
Dynamics

Recently we have developed a trajectory 
surface-hopping AIMD scheme based on 
TDDFT.[8] All relevant quantities, namely 
ground- and excited-state energies, nuclear 
forces,[5,6] nonadiabatic couplings,[9–11] and 
transition dipole elements are expressed 
as a functional of the electronic density or, 
equivalently, of the Kohn-Sham (KS) or-
bitals, in the framework of linear-response 
time-dependent density functional theory 
(LR-TDDFT).[12]

Tully’s surface hopping differential 
equations[13] that govern the dynamics of 
the nuclei are obtained by replacing
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i�Ċα
J (t) =

∑
I

Cα
I (t)(HJI − i�Ṙα · dα
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in the time-dependent Schrödinger equa-
tion for the combined electron-nuclear sys-
tem, which gives 
 

1

Ψ(r, R, t) = Φ(r, R)Ω(R, t)e
i
�

R t
0 dt′ Eeh(t′) , (1)

Eeh(t) =

∫ ∫
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where the label α indicates that the corre-
sponding quantities are evaluated for the 
trajectory α of the ensemble of trajectories. 
Because of the adiabatic representation of 
the electronic wave functions, the matrix 
elements H

JI
 are diagonal H

JI
 = δ

JI
Eel

J
(R), 

where Eel
J
(R) are the excited state energies 

computed using TDDFT equations. In Tul-
ly’s surface hopping dynamics, the classical 
trajectories evolve adiabatically according 
to BO dynamics until a hop between two 
potential energy surfaces (H

II
 and H

JJ
) occurs 

with a probability given by a Monte Carlo-
type criterion. In the ‘fewest switches’ algo-
rithm, the transition probability from state I 
to state J in the time interval [t,t + dt] is
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and a hop occurs if and only if
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where ζ is generated randomly in the in-
terval [0,1]. In practice, a swarm of tra-
jectories is propagated independently 
starting from different initial conditions, 
and the final statistical distribution of all 
these trajectories is assumed to reproduce 
the correct time evolution of the nuclear 
wavepacket. It is important to stress that, at 
present, no formal justification of Tully’s 
algorithm has been formulated.

For this reason, we are currently de-
veloping a formally exact trajectory-based 
solution of the combined electron-nuclear 
time-dependent Schrödinger equation.[14] 
The method named NonAdiabatic Bohm-
ian DYnamics (NABDY) is based on quan-
tum trajectories that can be propagated on-
the-fly using DFT and LR-TDDFT.

Recently, we have also developed an 
extension of Tully’s trajectory surface hop-
ping scheme to couple nuclear and elec-
tronic degrees of freedom with an external 
electromagnetic field.[15] The resulting nu-
merical algorithm allows for a more realis-
tic description of the photoexcitation pro-
cess that was previously approximated by 
an ad hoc vertical excitation of the system 
into one of its excited states at the begin-
ning of the simulation.

In this formalism, the coupling with the 
field is added in the normal expression for 
the C(t) coefficients (Eqn. (4)) of trajectory 
surface hopping:
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where A
0
 is here the vector potential 

strength, w
JI
 is the energy difference be-

tween the electronic states J and I , w is 
the frequency of the external field, m

JI
a is 

the position dipole vector between states 
I and J, and el is the polarization vector. 
The usual trajectory surface hopping prob-
ability is modified according to Eqn. (8).

As a result of the coupling with the 
external electric field, population is trans-
ferred according to the polarization and 
frequency of the external field. The excita-
tion of the molecular system corresponds 
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Using molecular dynamics, we have 
been able to follow the real time evolution 
of a membrane-embedded rhodopsin dimer 
(Fig. 3, left panel) after photoiosomeriza-
tion up to the microsecond time scale. In 
this way, we were able to structurally char-
acterize all of the distinct intermediates of 
the photocycle (Fig. 3, right panel) that 
have been previously proposed by infrared 
and Raman spectroscopy: photorhodopsin 
(occurring ca. 200 fs after photoisomeriza-
tion), Bathorhodopsin (picoseconds), Blue 
Shifted Intermediate (BSI), Lumirhodop-
sin (nanoseconds),[24] Metarhodopsin I 
(microseconds), and Metarhodopsin II 
(milliseconds).[25]

In addition, these simulations have 
rationalized the experimentally observed 
enhanced activation efficiency of dimeric 
rhodopsin with respect to the monomeric 
form,[26] indicating that the dimer interface 
plays a crucial role in this process. In fact, 
the signal is transmitted through the dimer 
interface from one monomer to the other 
within a few tens of nanoseconds follow-
ing photoexcitation. Through this asym-
metric mechanism, the relaxation of the 
photoexcited chromophore in one mono-
mer is directly relayed to the other subunit 
that undergoes conformational rearrange-

(1MLCT) state, undergoes intersystem 
crossing to a 3MLCT state within 100 
fs. The dynamics of this complex in the 
ground state and in the long-lived triplet 
state was extensively studied in previous 
works,[18,19] whereas the mechanism of 
nonadiabatic relaxation from the initially 
populated 1MLCT states is still unknown. 
Starting from the first 1MLCT state with 
large oscillator strength, our calculations 
corroborate the experimental findings by 
first showing a very fast nonadiabatic re-
laxation among several 1MLCT states of 
[Ru(bpy)

3
]2+. In addition, after a few tens 

of femtoseconds, important crossings and 
couplings with 3MLCT states are observed, 
according to a qualitative analysis of the 
spin-orbit coupling matrix elements. This 
indicates that several intersystem crossing 
events can already take place after 50 fs 
of dynamics. Even though the time scale 

of such nonradiative relaxations does not 
allow large molecular rearrangement, fast 
rotations of water molecules occur in the 
second coordination sphere and may lead 
to a stabilization of the excited states.

Signal Transduction upon Ultrafast 
cis–trans Photoisomerization in 
Rhodopsin 

Rhodopsin is a member of the G-pro-
tein coupled receptor (GPCR) family[20,21] 
responsible for light-detection and is the 
main player of an extremely efficient and 
ultrafast process. Unlike other GPCRs,[22] 
the activation pathway of rhodopsin has 
been elucidated by spectroscopic experi-
ments as well as X-ray crystallography: in 
the dark state, the binding site of rhodopsin 
is occupied by the inverse agonist 11-cis 
retinal, which is covalently linked to resi-
due K296 of transmembrane helix 7 via a 
protonated Schiff base. Photo-induced 
isomerization (quantum yield: 0.67) of 
the chromophore from 11-cis to all-trans 
inside the binding pocket leads to a cas-
cade of fast conformational changes that 
ultimately lead to receptor activation and 
downstream signaling, through the desta-
bilization of some crucial cytoplasmatic 
interactions.[23]

Fig. 1. Oxirane under 
an electromagnetic 
field. Upper panel 
shows the time 
evolution of the 
population of a 
selected independent 
trajectory. Mid panel 
presents the different 
potential energy 
curves along the 
dynamics, where the 
green (dashed) line 
indicates the driving 
state. Lower panel 
depicts the train of 
ultrashort pulses 
applied on oxirane 
(represented on the 
right).

Fig. 2. Ruthenium (ii) tris(bipyridine) (QM) 
surrounded by classical water molecules. 
Atoms of the closest water molecules are 
shown in red (oxygens) and white (hydrogens). 
Further solvation water molecules are shown in 
dark blue.

Fig. 3. Left panel: rhodopsin dimer model immersed in a lipid bilayer with explicit solvent. Right 
panel: outline of the rhodopsin binding pocket and of the protonated Schiff Base conformation in 
the dark (orange) and batho (grey) photointermediates. 
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ments towards the active state for G-pro-
tein coupling, suggesting that dimerization 
could be a possible regulatory mechanism 
for adaptive light detection.

Conclusion and Outlook

Our preceding and continued efforts in 
the development and application of more 
and more powerful tools for the computa-
tional description of ultrafast phenomena 
provide direct theoretical support for the 
experimental investigations within the 
NCCR MUST while quantitative experi-
mental data serves in turn to validate and 
assess the performance of different theo-
retical methods. 
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