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Abstract: Nuclear tunneling and other nuclear quantum effects have been shown to play a significant role in mol-
ecules as large as enzymes even at physiological temperatures. I discuss how these quantum phenomena can 
be accounted for rigorously using Feynman path integrals in calculations of the equilibrium and kinetic isotope 
effects as well as of the temperature dependence of the rate constant. Because these calculations are extremely 
computationally demanding, special attention is devoted to increasing the computational efficiency by orders of 
magnitude by employing efficient path integral estimators.

Keywords: Equilibrium isotope effect · Kinetic isotope effect · Path integral estimator ·  
Quantum instanton approximation · Quantum transition state theory

1. Introduction

The study of kinetics 
and thermodynam-
ics of chemical reac-
tions is a large field 
requiring many differ-
ent experimental and 
theoretical techniques. 
Reactions between 

small molecules at low temperatures fol-
low strictly laws of quantum mechanics 
while biochemical reactions at physiologi-
cal temperatures usually abide by the laws 
of classical mechanics. One of the advan-
tages of working in a theoretical laboratory 
is that we are not constrained by a highly 
specialized experimental setup and hence 
can study the full range of processes. On 
one hand, we develop new quantum and 
semiclassical methods to solve the time-
dependent Schrödinger equation, in order 
to study coherent quantum dynamics of 
small molecules[1–3] with applications, e.g. 
in ultrafast electronic spectroscopy.[4] On 
the other hand, we use classical statistical 

mechanics to analyze interactions between 
biologically important macromolecules. 
Specifically, we have designed several 
algorithms predicting which messenger 
RNA molecules are targeted by microR-
NAs,[5] the results of which can help un-
derstanding herpes virus latency.[6] Here 
I will focus on the intermediate case of 
thermally activated chemical reactions in 
which nuclear quantum effects such as tun-
neling and zero-point-energy effects are 
important, but the coherence effects are 
lost due to thermal averaging. 

Because of the central role played 
by the equilibrium and rate constants in 
physical chemistry, many approximations 
for these quantities have been developed 
over time. The most often used approxima-
tions for the rate constant are the Arrhenius 
equation and transition state theory (TST). 
As it turns out, both of these treat nuclei 
essentially (i.e. up to ad hoc corrections 
mentioned below) as classical particles. 
While this often is an appropriate point of 
view, it fails completely when hydrogen 
is involved in bond breaking or forma-
tion. Indeed, strong nuclear quantum ef-
fects have been observed in many chemi-
cal reactions and recently even in quite a 
few enzymatic reactions.[7–10] In order to 
include the quantum effects, several so-
called quantum transition state theories 
(QTSTs)[11–15] have been developed, the 
quantum instanton approximation being 
one of them.[16] 

The importance of nuclear quantum 
effects is detected experimentally by mea-

suring the equilibrium and kinetic isotope 
effects as well as the temperature depen-
dence of the rate constant. Below I will 
discuss several theoretical methods for 
computing these quantities rigorously, 
i.e. methods that include nuclear quan-
tum effects such as the zero-point energy 
and tunneling, and that do not assume 
separability of rotational and vibrational 
degrees of freedom or the harmonic ap-
proximation for vibrations. The improve-
ments thus achieved will be demonstrated 
on three examples of hydrogen transfer 
reactions: (i) the simplest activated chemi-
cal reaction, H + H

2
 → H

2
 + H, for which 

the exact quantum calculation is feasible, 
(ii) the [1,5]-sigmatropic hydrogen shift 
in (3Z)-penta-1,3-diene [compound 1, see 
Fig. 1(a)],[17] and (iii) the hydrogen trans-
fer in a much larger molecule (with 48 
atoms), namely in the 2,4,6,7,9-pentam-
ethyl-5-methylene-11,11a-dihydro-12H-
naphtacene [compound 2, see Fig. 1(b)].[18] 

2. Equilibrium Isotope Effects

Let us first consider the equilibrium 
isotope effect (EIE), defined generally as

EIE = K
l 
/ K

h
� (1)

where K
l
 and K

h
 are the equilibrium con-

stants for the reaction with the lighter and 
heavier isotopolog, respectively. We shall 
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function if the latter is known explicitly. 
For a molecule with D degrees of freedom, 
the PI representation of the partition func-
tion Q is given by Q = lim

P→∞
Q

p
 with

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

(5)

In the above equation,

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

is a multiplicative factor, P is the number 
of quantum replicas of the system (also 
called imaginary time slices), and r(s) ≡ 
(r

1
(s),...,r

D
(s)) are the D coordinates of the sth 

replica. Finally, Φ
P
({r(s)}) is the effective 

potential given by

(6)

(8)

(9)

(6)

with r(0) ≡ r(P) and {r(s)} a shorthand for 
{r(1), r(2),..., r(P)}. The effective potential 
can be interpreted as a classical potential 
of a polymer chain: the quantum nature of 
the original molecule is described by the 
‘harmonic bonds’ between the replicas (i.e. 
monomers) in a classical polymer chain 
with PD degrees of freedom. 

From expressions (5) and (6) it follows 
that for P = 1 one obtains the classical 
partition function and hence classical ther-
modynamics. The exact quantum partition 
function and quantum thermodynamics are 
obtained in the limit P → ∞, but in practice 
it often suffices to take quite a small value 
of P to obtain accurate quantum results.

The thermal average A(β) of a physical 
observable A such as the thermal energy is 
computed as the PI average as in

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

(7)

where 〈·〉
Pp

 denotes a weighted aver-
age over PI configurations. The reactant 
weight function is given by ρ

r,P
 = exp(–β 

Φ
P
) and the function A

P
({r(s)}) is called a 

PI estimator for A(β).
In practice, there exist two main strate-

gies for evaluating the PI average (7): the 
PI molecular dynamics (PIMD)[20] or PI 
Monte Carlo (PIMC)[21] techniques. The 
results in Table 1[19] were obtained with 
a PIMD implementation in the molecular 
dynamics package Amber 10, while the 
results for the KIE and the temperature 
dependence of the rate constant, to be dis-
cussed below, were obtained with an in-

consider an interesting special case – the 
equilibrium ratio of two isotopomers (i.e. 
isotopologs with the same total weight) – 
in which the EIE is actually equal to the 
equilibrium constant of the isotopomeriza-
tion reaction,

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

(2)

where p and r denote the product and reac-
tant, respectively. The equilibrium constant 
is given exactly in terms partition functions 
as K = Q

p 
/ Q

r
. Unfortunately, the quantum 

partition functions can be computed direct-
ly only for very small molecules. Therefore 
several basic approximations have been 
used. The leading contribution to the EIE 
(2) is the ratio of symmetry numbers of the 
reactant and product, EIE ≈ EIE

sym
 = s

r 
/ s

p
. 

Beyond that, one usually assumes separa-
bility of the rotations and vibrations, rigid 
rotor approximation for the rotations, and a 
harmonic approximation for the vibrations. 
Denoting these three approximations to-
gether simply as the harmonic approxima-
tion (HA), the EIE can be computed ana-
lytically as EIE ≈ EIE

sym
EIE

HA
 where EIE

HA
 

is the ratio of quantum partition functions 
for harmonic oscillators and for rigid rota-
tors whose parameters are obtained from 
the Hessian of the potential energy sur-
face at the equilibrium structure. In order 
to include the quantum effects rigorously 
without any of these approximations, in 

ref. [19], a thermodynamic integration (TI) 
with respect to the mass was used to com-
pute the EIE (2) as EIE ≈ EIE

sym
EIE

TI

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

(3)

where β = 1/(k
B
T), F = –β–1lnQ is the free 

energy and λ∈[0,1] is a parameter provid-
ing a smooth transition between the two 
isotopomers. This can be accomplished 
e.g. by linear interpolation between masses 
of all corresponding atoms in the molecule 
according to the equation

m
i
(λ) = (1–λ)m

r,i
 + λm

p,i
� (4)

Unlike the partition function, the deriva-
tive dF/dλ can be computed directly with 
a path integral simulation.

Before explaining the path integral pro-
cedure in detail, let us examine the results 
in Table 1, comparing the experimental 
equilibrium fractions of three isotopomers 
of compound 2 with the corresponding 
fractions calculated with three different 
methods. The table shows that while the 
HA approximation corrects the symmetry 
ratio in the right direction, the path integral 
result is closer to the experiment. Although 
the deviation of the experimental ratio 
from the symmetry ratio is quite small, it 
can be significant in some situations. In 
any case, below we will see that the nuclear 
quantum effects are much stronger for the 
kinetic isotope effect and the temperature 
dependence of the rate constant.

Table 1: Equilibrium fractions of three 
isotopomers of compound 2 [see Fig. 1(b)] at 
441.05 K.

Isotopomer 2-1,1-d2 2-5,5-d2 2-1,5-d2

Symmetry 0.100 0.300 0.600

Harmonic 
approx.[19]

0.095 0.312 0.593

Path integral[19] 0.096 0.310 0.594

Experiment[18] 0.098 0.308 0.594

3. Path Integral Evaluation

How does one evaluate expression (3) 
with the Feynman path integrals (PIs)? The 
partition function, defined as 

(2)

, (3)

symb a

(5)

symb b

(6)

(7)

(8)

is a central quantity in statistical thermody-
namics. In this sum, ε

n
 is the energy of the 

nth eigenstate. Any thermodynamic quan-
tity such as the thermal energy or heat ca-
pacity can be expressed from the partition 

Fig. 1. (a) The [1,5] sigmatropic hydrogen 
shift in (3Z)-penta-1,3-diene (1). The reactant 
and product differ by substitution of some 
hydrogens by deuteriums. (b) Global minimum 
of 2,4,6,7,9-pentamethyl-5-methylene-11,11a-
dihydro-12H-naphtacene (2).
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shorter simulation (!) is needed to obtain a 
prescribed convergence if the CVE is used 
instead of the TE.

5. Kinetic Isotope Effects and the 
Temperature Dependence of the 
Rate Constant

Having discussed in detail the PI calcu-
lation of the EIE, we are prepared for the 
somewhat more involved quantum treat-
ment of chemical kinetics. The KIE is de-
fined as the effect of isotopic substitution 
on the rate constant,

(9)

. (10)

symb c

(11)

(12)

(10)

The KIE is widely used in chemical ki-
netics to detect nuclear tunneling and other 
nuclear quantum effects, as well as to dis-
tinguish between possible reaction mecha-
nisms. Unlike the rate constant itself, the 
KIE depends very little on the height of 
the classical reaction barrier, and so the 
KIE can separate various effects from the 
dominating exponential dependence on the 
barrier height. 

By the temperature dependence of the 
rate constant we simply mean the ratio k(T) 
/ k(T

0
) of the rate constant at two different 

temperatures. Similarly to the KIE, a cur-
vature in this ratio (as a function of T) is a 
reflection of nuclear quantum effects and 
can discriminate between different reac-
tion mechanisms.

In order to describe the KIE and the 
temperature dependence quantum me-
chanically, one needs to use an accurate 
expression for the rate constant itself. 
Clearly, the Arrhenius law 

(9)

. (10)

symb c

(11)

(12)

in which the temperature dependence 
is purely exponential, is not sufficient. 
However, for our purposes even the chem-
ist’s gold standard, i.e. the TST expression

(9)

. (10)

symb c

(11)

(12)

(11)

is too crude. In fact, soon after Eyring’s 
derivation,[24] Wigner[25] showed that this 
expression is essentially classical: if the 
classical partition functions are substituted 
into the right-hand side of Eqn. (11), the 
Planck constant h disappears. Several ad 
hoc corrections can be included into the 
TST expression (11), such as the zero-point 
energy correction or the Wigner tunneling 
correction (which is the leading order tun-
neling correction for an inverted harmonic 
barrier).[26] In realistic molecules, in which 
rotations and vibrations are not separable 
and in which the vibrations are not exactly 

house PIMC code (using the Metropolis 
algorithm).

4. Efficient Estimators

The PI estimator for a given quantity 
turns out not to be unique. The art of PI 
simulations therefore lies in finding the 
optimal estimator, i.e. an estimator that 
has the smallest statistical error for a given 
simulation length. The simplest estimator 
for dF(λ)/dλ is the so-called thermody-
namic estimator (TE), obtained directly 
by substituting the PI expression (5) into 
Eqn. (3), giving[22] 

(6)

(8)

(9)

(8)

Applying a couple of tricks (namely, 
subtracting the centroid coordinate and 
mass-scaling the Cartesian coordinates) to 
the PI (5) yields the centroid virial estima-
tor (CVE),[19,23] 

(6)

(8)

(9)

(9)

This form of the CVE is suitable for 
PIMD simulations. An alternative form, 
based on evaluating the dF((λ)/dλ deriva-
tive by finite difference, is suitable for 
PIMC simulations in which gradients of V 
are unavailable.[19,23]

While the statistical error of the TE 
grows with P, the statistical error of the 
CVE is independent of P. One can there-
fore reach the quantum limit (requiring a 
large P) in a much shorter simulation with 
the CVE. Fig. 2 compares the two estima-
tors used in the calculation of the EIE in 
pentadiene.[19] While the converged esti-
mators agree [see Fig. 2(a)] and both re-
quire P ≥ 32 to reach the quantum limit, 
Fig. 2(b) shows that for P = 64 and a con-
stant simulation length, the error of the 
CVE is ten times smaller than the error of 
the TE. This implies that a hundred times 
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Fig. 2. (a) Dependence 
of the quantum free 
energy derivative 
(computed with 
the CVE and TE) in 
compound 1 on the 
number of replicas P 
in the path integral. 
The quantum limit 
is reached for P → 
∞. (b) Dependence 
of the root mean 
square error (RMSE) 
of the CVE and TE 
on P for a given 
simulation length. For 
P = 64, the RMSE 
of the CVE is about 
ten times smaller 
than the RMSE of 
the TE, resulting in 
a hundred times 
faster convergence of 
simulation. 
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harmonic, one needs to use a more rigor-
ous approach. Among these is a recently 
obtained quantum instanton (QI) approxi-
mation for the rate constant,[16]

(9)

. (10)

symb c

(11)

(12)(12)

where C
ff
(t) is the flux-flux correlation 

function and ∆H certain energy variance.[27] 
The QI approximation solves all of the 
above-mentioned shortcomings. In ad-
dition, unlike several methods that treat 
tunneling semiclassically, it considers all 
tunneling paths, and not just a single tun-
neling path (e.g. in the optimized multi-
dimensional tunneling method of Truhlar 
and coworkers[28]) or a harmonic expan-
sion about the optimal tunneling path (as 
in Miller’s semiclassical instanton ap-
proximation[29,30]). To clarify the above 
statements, Fig. 3 shows the contour plot 
of a two-dimensional potential energy 
surface for a reaction A + BC → AB + C 
and displays regions of this surface that 
are considered in various methods. What 
QI approximation does not account for is 
recrossing from the product to the reactant 
region. However, recrossing (i) is essen-
tially a classical effect, (ii) is missed in all 
classical and quantum TSTs, (iii) can be 
included in classical dynamical theories, 
and (iv) usually is quite small when quan-
tum effects (in which we are interested the 
most) are important.[31]

It turns out to be difficult to compute 
the QI rate constant with PIs; this difficul-
ty is due to the requirement of umbrella 
sampling between reactant and transi-
tion-state regions.[27] We have therefore 
developed efficient PI methods to evalu-
ate the KIEs[22,23,32] and the temperature 
dependence of the rate constant[32,33] 
directly without having to evaluate the 
rate constant itself first, as is done in 
ref. [27]. Because both the KIE and the 
temperature dependence k(T) / k(T

0
) are 

ratios of rate constants, one can employ 
thermodynamic integration similar to that 
used for the EIE. The main difference 
is that one needs to modify the estima-
tors due to the constraint near the tran-
sition state and that the thermodynamic 
integration is with respect to the inverse 
temperature instead of the isotope mass 
in case of the temperature dependence of 
the rate constant. The detailed algorithms 
are described in refs. [19,22,23,33]. Most 
importantly, these references describe ef-
ficient estimators for relevant quantities, 
which again accelerate the calculations by 
orders of magnitude.

Fig. 4 shows the temperature depen-
dence of the rate constant for the H + 
H

2
 → H

2
 + H reaction. It shows that the 

TST can underestimate the rate constant 
by orders of magnitude. Even the Wigner 
tunneling correction is insufficient to de-
scribe hydrogen tunneling in this reaction 
below 400 K. On the other hand, the QI 
approach from ref. [33] gives a very accu-
rate temperature dependence in compari-
son with the exact quantum mechanical 
calculation from ref. [22]. Fig. 5 shows 
the temperature dependence of the KIE 
on the [1,5] sigmatropic hydrogen shift in 
(3Z)-penta-1,3-diene. The QI and TST re-
sults were computed in ref. [32] while the 
experimental results are from ref. [17]. 
Clearly, the TST is inadequate for this re-
action, while the QI approach gives very 
accurate results.

6. Discussion and Conclusion

It was mentioned that using the effi-
cient estimators, the quantum PI calcula-
tions can be accelerated hundred-fold at 

Fig. 3. Contour plot of a two-dimensional 
potential energy surface for the reaction A 
+ BC → AB + C and regions considered in 
various approximations for the reaction rate 
constant. The TST considers only the transition 
state (i.e. the saddle point of the surface) 
lying on the minimum energy path (MEP). The 
semiclassical (SC) instanton method considers 
a single optimal tunneling trajectory, which can 
be shorter than the MEP, thereby accounting 
for the so-called ‘corner-cutting effect’. 
Finally, the QI approximation considers the full 
ensemble of tunneling trajectories that cross 
the two dividing surfaces.
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Fig. 4. Temperature 
dependence of 
the rate constant 
for the H + H2 → 
H2 + H reaction: 
Comparison of 
several approximate 
methods[33] with 
the exact quantum 
mechanical (QM) 
calculation.[22] The 
Wigner tunneling 
correction is 
insuffi cient to 
describe hydrogen 
tunneling in this 
reaction below 400 K.
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Fig. 5. Temperature 
dependence of 
the kinetic isotope 
effect on the [1,5] 
sigmatropic hydrogen 
shift in (3Z)-penta-
1,3-diene [see Fig. 
1(a)]. The QI and 
TST results were 
computed in ref. [32] 
while the experimental 
results are from ref. 
[17]. Clearly, the TST 
is inadequate for 
this reaction where 
hydrogen tunneling 
plays a major role.
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room temperature. Unfortunately, even 
after this speedup the PI simulations are 
extremely computationally expensive: one 
usually needs at least 104 to 105 samples, 
corresponding to millions of potential en-
ergy evaluations. In order to obtain results 
in a reasonable time, sometimes one has 
to sacrifice the accuracy of the electronic 
structure and use the less accurate force 
fields, semiempirical methods, or empiri-
cal valence bond potentials. 

In our calculations,[19,32] we have 
avoided the unnecessary loss of accuracy 
by using a hierarchical scheme of elec-
tronic structure methods based on the 
premise that the more important contribu-
tions should be treated with more accurate 
electronic structure methods. The barrier 
heights were obtained with a higher level 
method, the HA results with an intermedi-
ate level method, and the anharmonicity/
quantum PI corrections with a lower level 
method.

Despite the high cost, PI calculations 
of nuclear quantum effects have become 
increasingly popular in recent years: they 
have been used to find the isotope effect 
on the melting temperature of ice,[34] hy-
drogen diffusion on a Ni surface,[35] kinetic 
isotope effects on the proton transfer,[36] or 
even nuclear quantum effects in enzymes.
[37] When the accurate electronic structure 
is of greater importance than the accurate 
treatment of the nuclear quantum effects, 
one can avoid the expensive PI sampling 
by searching only for the optimal semiclas-
sical tunneling trajectory, which is done in 
the semiclassical instanton method. This 
method has seen a recent revival thanks to 
various efficient numerical implementa-
tions.[38–41]

The work in progress in our group 
is on further accelerating the PI calcula-
tions (i) using high-order decomposition of 
the PI such as the Takahashi-Imada split-
ting,[42] which would enable reaching the 
quantum limit with a smaller value of P, 
(ii) employing the Fourier PI sampling,[43] 
which would accelerate exploration of the 
PI configuration space, and (iii) evaluating 
the electronic structure much faster using 
graphical processing units (GPUs).[44] 

In conclusion, I have discussed several 
ways how Feynman path integrals can be 
used to rigorously describe nuclear quan-
tum effects on the equilibrium and rate con-
stants of chemical reactions. In particular, I 
have addressed how such computationally 
demanding calculations can be accelerated 
with the development of efficient path in-
tegral estimators. 
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2010, 132, 194106.
[34] 	R. Ramirez, C. P. Herrero, J. Chem. Phys. 2010, 

133, 144511.
[35] 	Y. Zhao, W. J. Wang, J. Chem. Phys. 2009, 130.
[36] 	K. F. Wong, J. L. Sonnenberg, F. Paesani, 

T. Yamamoto, J. Vaníček, W. Zhang, H. B. 
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