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From Theory to Bench Experiment by
Computer-assisted Drug Design
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Abstract: Tight integration of computer-assisted molecular design with practical realization by medicinal
chemistry will be essential for finding next-generation drugs that are optimized for multiple pharmaceutically
relevant properties. ETH Zürich has established an interdisciplinary research group devoted to exploring the
potential of this scientific approach by combining expertise from pharmaceutical chemistry and computer
sciences. In this article, some of the group’s activities and projects are presented. A current focus is on machine-
learning applications aiming at hit and lead structure identification by virtual screening and de novo design. The
central concept of ‘adaptive fitness landscapes’ is highlighted along with practical examples from drug discovery
projects.

Keywords: Drug discovery · Machine-learning · Medicinal chemistry · Protein structure · Virtual screening

Gisbert Schneider studied biochem-
istry and computer science at the Free
University of Berlin, Germany, where
he received his doctoral degree in 1994.
After several post-doctoral research ac-
tivities he joined F. Hoffmann-La Roche
Pharmaceuticals in Basel, Switzerland,
where he headed the cheminformatics
group. During this time in industry he re-
ceived his habilitation and venia legendi in
biochemistry and bioinformatics from the
University of Freiburg, Germany. In 2002
he became a full professor of chem- and
bioinformatics (Beilstein Endowed Chair)
at Goethe-University Frankfurt, Germany,
where he now is a distinguished adjunct
professor. In 2010 he joined ETH Zürich
as a full professor of computer-assisted
drug design.

Online information about the Schneider
group at ETH can be found at URL: http://
www.modlab.ethz.ch

A Role for Computational Medicinal
Chemistry

Pharmaceuticaldrugdiscoveryhasbeen
fuelled to a large extent by high-through-
put screening (HTS),[1] fragment-based ap-
proaches,[2] and serendipitous findings.[3]
The field prospers with each technological
breakthrough in synthetic organic chemis-
try, e.g. combinatorial ‘click-type’ chemis-
try and ring-closing metathesis reactions,
miniaturized flow systems,[4,5] as well as
biochemical and biophysical activity de-
termination,[6] e.g. by innovative whole-
cell assays[7] and advanced spectroscopic
methods,[8] to just name some prominent
examples. Despite such outstanding tech-
nological advances the productivity of
pharmaceutical industry is currently be-
ing perceived as stalled, with only small
numbers of new drugs being approved by
the authorities.[9] It has become apparent
that the traditional model of drug discov-
ery and development, in which primary

screening of ever-increasing numbers of
compounds generates many failing can-
didate drugs, urgently needs revision.[10]
Progress may be possible by adequately
considering the multi-dimensional nature
of drug discovery,[11] including compound
toxicity and aqueous solubility,[12,13] and
extending the chemical diversity that is
currently addressed and exploited by HTS.
Here, consequent exploration of computer-
assisted drug design can play a formative
role (Fig. 1).[14,15]

Already now computational approach-
es in medicinal chemistry, particularly in
molecular design, serve as an additional
entry point to achieving sustained suc-
cess in lead discovery.[16] Modern HTS is
complemented by structure- (receptor-)
and ligand-based virtual screening, i.e.
computationally sieving through large vir-
tual libraries of druglike small molecules
and predicting bioactivity profiles for pri-
oritized sets of screening compounds.[17]
Focused compound libraries with signifi-
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Fig. 1. A molecu-
lar design cycle.
Adaptive molecular
design includes
computer-assisted
model building, vir-
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de novo design,
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and testing of can-
didate compounds.
It may be entered at
any stage depending
on available project
knowledge.
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are first generated virtually from available
molecular building blocks, but then syn-
thesized in analytical or semi-preparative
amounts, and finally tested for target bind-
ing in vitro.

The central idea of our drug design
concept is an adaptive fitness landscape
as a mathematical model of the underlying
structure–activity relationship (SAR) for a
given drug target or design objective (Fig.
2). Such a model structures parts of chemi-
cal space (that is, all compounds that can
be synthesized with a given set of chemical
reactions and molecular building blocks)
into regions of high (‘activity islands’) and
low (‘tabu zones’) predicted bioactivity.At
the beginning of a drug discovery project,
in absence of many known active and in-
active compounds, the model landscape is
largely unbiased (Fig. 2a). With increasing
numbers of active and inactive compounds
being discovered, machine-learning algo-
rithms incorporate this gained knowledge
in the adapting landscape (Fig. 2b, 2c), and
thereby guide the next round of compound
synthesis and testing. Visualization of fit-
ness landscapes can help in compound
prioritization and optimization.[28] Several
such methods have been developed and
implemented by our group. The latest soft-
ware tool is LiSARD (Ligand Structure-
Activity Relationship Display), which
was specifically designed for project ap-
plications having the medicinal chemist in
mind.[27] Selected examples of computa-
tionally de novo designed compounds that
were iteratively optimized are presented in
Fig. 3.

From Models to Molecules by
Virtual Screening

Computer-based ligand identification
by machine-learning shall be presented

cant hit rates in biochemical assays may be
obtained through in silico property profil-
ing and chemotype selection.[18] Similarly,
de novo design attempts to generate novel
ligands by virtually assembling molecular
building-blocks, guided by multi-objec-
tive ‘fitness functions’ that help navigat-
ing in chemical space towards regions of
desired bioactivity.[19] In fact, the number
of organic molecules that could theoreti-
cally be synthesized is estimated to exceed
1060 – a mind-bogglingly large number.[20]
Compared to the typical number of com-
pounds tested in an HTS campaign – ap-
proximately 1–2 million – the sheer size of
chemical space clearly prohibits any glob-
al, exhaustive exploration. What seems
plausible is to pursue local optimization
tactics by computer-assisted compound
profiling. A working approach to address
this challenge is to perform extensive
negative design, that is, prior to selecting
desirable candidates (positive design) one
eliminates molecules that have predicted
adverse properties and features. This idea
is extended by limiting the search space
to synthetically feasible compounds that
could be assembled from few building
blocks with established chemical reac-
tions. Of note, small to medium-sized
fragment collections have been proven to
yield numerous valid starting points for
hit-to-lead optimization in various drug
discovery projects.[21] Recently, software
tools have been developed for the purpose
of fully automated fragment growing and
linking using virtual reaction schemes, and
several pioneering practical applications
have been published.[22]

Computer-assisted Drug Design at
ETH Zürich

These developments corroborate trans-
disciplinary research at the interface be-
tween theory and laboratory experiment
as appropriate and essential for finding
inventive solutions to pressing issues in
medicinal chemistry. Consequently, re-
search activities of the Computer-Assisted
Drug Design group in the Department of
Chemistry and Applied Biosciences at
ETH Zürich concentrate on the develop-
ment and implementation of innovative
concepts, algorithms and software for rapid
identification of bioactive tool compounds
and pharmaceutical lead structures. At the
heart of these studies lies the machine-
driven de novo design and virtual screen-
ing of both individual candidate molecules
and small focused compound libraries that
exhibit a desired pharmacological activ-
ity profile.[23] Our research includes drug
re-purposing, in silico polypharmacology
and chemogenomics projects, analysis of
protein structure and modulation of pro-

tein–protein interaction, as well as the de-
orphanization of drugs and their macro-
molecular receptors. The group runs own
synthesis and testing facilities and a ser-
vice point for virtual screening (SerViS).
A current focus is on the design of in-
novative immunomodulatory agents and
anti-infective lead structure candidates in-
cluding host-defense peptides and natural-
product mimicking compounds.[24] In tight
cooperation with leading groups from aca-
demia and pharmaceutical industry, mo-
lecular design concepts are evaluated and
applied to drug discovery projects. As the
molecular design cycle involves multiple
scientific disciplines and requires rigorous
inter-disciplinary thinking, the ETH team
consists of students and researchers with
different scientific skills and background.
First-rate equipment is available to support
computer scientists, bio/cheminformati-
cians, pharmaceutical chemists, biochem-
ists, and engineers alike. We strive for a
stimulating and idea-provoking research
environment to enable and facilitate com-
putational medicinal chemistry and break
down potential barriers between the scien-
tific disciplines involved.

Model-building by Adaptive
Learning

Iterative synthesize-and-test cycles are
key to optimization of compound prop-
erties.[25] We recently demonstrated that
there are optimal combinations of the size
of a screening library and the number of
iterative screening rounds with the aim
to keep experimental efforts minimal.[26]
Accordingly, machine-learning methods
may guide an evolutionary design pro-
cess that constantly adapts to a dynamic
structure-activity relationship model (ac-
tive learning concept). New compounds
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End of the design project
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Fig. 2. Evolving fitness landscape. The figure presents the model of an adaptive structure–activity
relationship (SAR) landscape at various stages during a molecular design project (a–c). With in-
creasing numbers of tested compounds, the landscape becomes more detailed, thereby allowing
for increasingly fine-grained molecular optimization. Both active and inactive compounds contrib-
ute to the model. In this way, the automated synthesis and testing of candidate compounds can
be controlled by autonomous software. P(x) is a computed pseudo-probability function that struc-
tures the search space (part of chemical space) in regions with likely success or failure. Areas of
chemical space that are associated with low predictive confidence appear transparent in this vi-
sualization. Several such SAR landscapes can be combined for multi-dimensional optimization of
pharmaceutical lead compounds. Landscapes were generated using the LiSARD software tool.[27]
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scoring function.[36] Prediction robustness
was assessed on more than 1500 diverse
proteins forming homo- and hetero-dimer
complexes. Functional ‘hot-spot’ residues
are frequent among the predicted interface
residues, and, as a unique feature, the tech-
nique does not rely on sequence conserva-
tion. Blocking the protein–protein interac-
tion between interferon-α and its receptor
is directly linked to immune suppression.
Therefore, modulating this interaction by
small druglike molecules might represent
a future therapeutic strategy for diseases
associated with excessive production of
interferon-α, e.g. lupus erythematosus and
insulin-dependent diabetes mellitus.[37] As
a step in this direction, we applied our in-
terface prediction tool in combination with
structure-based virtual screening to finding
compounds that efficiently block the inter-
feron–receptor interaction. Starting from
an X-ray structure model of interferon-α,
we used our software PocketPicker[38] to
identify potential ligand-binding pockets
on the protein surface. Then, all pockets
were computationally investigated for po-
tential hot-spot residues. The most promis-
ing candidate pocket served as a template
for pharmacophore-based virtual screening
of a large collection of commercially avail-
able compounds. Among the compounds
tested, we found a potent, fragment-like
inhibitor (5) of cellular interferon produc-
tion (Fig. 5).[40] This first-in-class hit can
now be used as a starting point for lead
structure generation by medicinal chemis-
try, or undergo computational optimization
by fragment-based de novo design.

Designing Bioactive Compounds
de novo

Automated computer-based design of
bioactive compounds has been an inten-
sively researched area since more than
three decades.[21] In 1994, we introduced
adaptive machine-learning algorithms to
computer-assisted compound generation

in some more detail for two selected ex-
amples: Gaussian process (GP) modeling
for identification of i) activators of per-
oxisome proliferator-activated receptor
gamma (PPAR-γ), a transcription factor,[31]
and ii) prediction of protein-protein inter-
face hot-spots for identification of a small
interferon-α antagonist.

Identification of PPAR-γ Agonists
by Machine Learning

To obtain a useful quantitative (Q)
SAR function f(x) that predicts a molecu-
lar property of interest, e.g. pK

d
, from a

molecular representation x (numerical mo-
lecular descriptors) contradictory aspects
have to be considered: On the one hand,
the QSAR function f must be sufficiently
complex to accurately express the typically
nonlinear relationship between molecular
descriptor vectors x

1
, x

2
, . . . , x

n
and the cor-

responding experimental measurements y
1
,
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n
. On the other hand, f should

not be too complex so that ‘over-fitting’
is avoided (i.e. memorizing the training
data at the cost of poor predictive accuracy
on new compounds). This tradeoff can be
captured mathematically by minimizing
the regularized empirical loss function[32]

minRemp
reg f( ) = 1n f (xi )− yi( )

2

i=1

n

∑

quality of fit
  

+ λ ⋅ r( f )
regularizer
  ,

where, r(f) is a regularization function for f
that penalizes the complexity of function f
to reduce the risk of over-fitting. Parameter
λ adjusts the influence of the regulariza-
tion function r on QSAR model learning.
Following this general concept, we trained
a so-called Gaussian Process model to
predict compound potency using a set of
known PPAR ligands.[33] We represented
all compounds by several molecular de-
scriptor types – ranging from generic prop-
erties (clogP, overall charge) to topological
and three-dimensional structural descrip-
tors. The idea was to provide sufficiently
diverse molecular representations so that
the machine-learning model could extract
functionally relevant features. The result-
ing QSAR function had a prediction error
in the order of the error of measurement.
Then, a large collection of screening com-
pounds was analyzed by this function, and
compounds were selected for biological
screening that were predicted to strongly
activate PPAR-γ binding (Fig. 4). Among
several hits, compound 4 – a racemic natu-
ral product derivative – turned out to acti-
vate PPAR-γ (EC

50
= 10±0.2 µM) without

modulating PPAR-α activity. This PPAR
subtype-selective chemotype is ready for
hit-to-lead development with the primary
aim to improve potency. Notably, for pre-
dicting PPAR activation, linear models
turned out to be insufficient, but nonlinear
SARmodeling resulted in several new bio-
active compounds.

Identification of an Interferon-α
Antagonist

Predicting protein–protein complex
formation and targeting protein–protein
interfaces by druglike compounds is an
area of intensive research.[34] We have de-
veloped an alignment-free computational
method predicting interface residues,[35]
based on a so-called knowledge-based
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Fig. 4. Machine-learning models for virtual screening. New selective activators of transcription
factor PPAR-γ (e.g. truxillic acid derivative 4) were identified by virtual screening using a machine-
learning SAR model that was trained on known PPAR-γ agonists represented by several types of
molecular descriptors.
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Fig. 3. Selected lead compounds that were
computationally designed and adaptively
optimized: Kv1.5 potassium channel blocker
(1, IC50 = 0.47 µM),[22a] cannabinoid 1 receptor
inverse agonist (2, Ki = 0.3 µM),[29] A2A puriner-
gic receptor antagonist (3, Ki = 2.4 nM).[30]
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and have improved these methods ever
since.[41] The ligand-based de novo design
software TOPAS (TOPology Assigning
System) was the basis for the first fully
automated evolutionary molecular de-
sign tool considering pseudo-reactions
for virtual building block assembly.[42] Its
youngest descendant, the software DOGS
(Design Of Genuine Structures), employs
validated organic reactions for this pur-
pose, mimicking a medicinal chemistry
laboratory.[43] With each designed com-
pound the software suggests a straightfor-
ward synthesis route and readily available
educts. The search algorithm has access
to 7.8 · 107 virtual one-step products, ap-
proximately 2.6 · 1015 two-step products,
and 7.6 · 1030 three-step products. In an
exploratory study, we used a combination
of complementary virtual screening tools
for the analysis of compounds that were

designed by DOGS with the aim to inhibit
polo-like kinase 1 (Plk1), a target for the
development of cancer therapeutics.[44]
Emphasis was put on the generation of
type II inhibitors arresting the inactive en-
zymatic state.[45] A comparative structural
model of the inactive state of Plk1was con-
structed, and the nucleotide binding pocket
conformations in the DFG (Asp-Phe-Gly)-
in (active) and DFG-out (inactive) state
were compared using a computational ap-
proach to pocket similarity assessment.De
novo designed compounds were analyzed
using pharmacophore matching, fitness
landscape analysis, and automated ligand
docking. We then synthesized compound
(6) following the synthetic route suggested
by the software (Fig. 6). It turned out that
compound 6 indeed arrests inactive Plk1 in
vitro, and does not exhibit significant inhi-
bition of activated Plk1 and a large panel of

other kinases tested. This proof-of-princi-
ple study demonstrates that by smart cou-
pling of virtual screening, fragment-based
synthesis and activity testing, new bioac-
tive agents with a desired activity profile
may be obtained.

Outlook

Similar to bioinformatics databases
containing genomic sequence informa-
tion, large searchable data banks of small
molecules and their properties have be-
come freely available – e.g. ChEMBL,[47]
PubChem,[48] ChemBank,[49] ChEBI,[50]
ChemDB[51] – and the known bioactive
chemical space is continuously extended
and refined. This huge body of chemical
structures and literature data will unques-
tionably help navigating druglike chemical
space.[52] These data also create a wealth
of intriguing machine-learning challenges
as well as opportunities to efficiently and
accurately predict properties of small mol-
ecules and reactions for drug discovery.[53]
Advanced drug design methods must be
able to cope with unstructured informa-
tion on druglike compounds and the vast
combinatorial nature of chemical space.
In hit-to-lead optimization lies a true chal-
lenge for computer-assisted drug design
for the years to come.[14] Multiple target
functions have to be considered in paral-
lel, with only limited and often noisy ref-
erence data for model development avail-
able, and context-dependent suitability
of molecular representations. In addition,
challenging next-generation targets have
started to come into focus for computer-
based drug design, for example, protein–
protein interaction interfaces,[54] RNA,[55]
as well as transient and allosteric ligand-
binding pockets.[56] Problem solving in
such a setting might indeed be a domain
of machine-learning, as several innovative
algorithmic solutions indicate.[57] Despite
all enthusiasm, one has to keep in mind
that computational tools do not provide a
cure-all recipe to problem solving in me-
dicinal chemistry. Technological advances
in many disciplines, with biology, chemis-
try and computer sciences playing leading
roles, and their conceptual amalgamation
are necessary for desired progress in drug
discovery.[58]
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inhibits human Polo-like kinase 1 (Plk1) in its inactive state (DFG-out
activation-loop conformation). The inhibitor was designed de novo using
the software DOGS which was developed at ETH Zürich. Compound 6
was synthesized as suggested by DOGS following a one-step protocol
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