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Abstract: We have recently generalized the method for localizing orbitals on a set of predefined molecular
fragments [Phys. Chem. Chem. Phys. 2012, 14, 546]. The regional localized molecular orbitals (RLMO) are well
suited for exploiting the locality of electronic correlation at post-Hartree-Fock level of theory. In this paper,
the adequacy of RLMO representation is tested in the second-order local Møller-Plesset (LMP2) perturbation
theory. Twomodel systems, namely, n-pentadecane and trans-retinal, are considered. Adequacy of RLMO/LMP2
method is discussed in conjunction with ‘exact’ MP2 and Pipek-Mezey LMP2 calculations. It is demonstrated
that RLMO/MP2 method reduces correlation space and reproduces more than 99% of the correlation energy.
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1. Introduction

Standard first-principle quantum-
chemical calculations are based on canoni-
cal molecular orbitals (CMO) that extend
over the whole molecule. The lack of local-
ity in CMO representation is responsible
for an unfavourable scaling of the electron-
ic structure calculations with the system’s
size. Molecular orbitals (MO) are only
auxiliary one-electron functions and any
unitary transformation of them preserves
the total wavefunction. Therefore, the
works are carried out in quest of the best
local molecular orbital (LMO) representa-
tion.[1–14] Such a representation should uti-
lize the locality and should relate directly
most traditional chemical concepts.

There is no unique choice of a unitary
transformation to get localized orbitals
and several methods have been proposed
in the literature. The best known schemes

are these proposed by Boys,[1,2] Edmiston-
Ruedenberg[3] and Pipek-Mezey.[8] They
are based on different localization criteri-
on, but the resulting orbitals are similar and
agree with chemical intuition. In the Boys
localization procedure[1] the spatial extent
of orbitals is minimized. The Edmiston-
Ruedenberg localization scheme[3] maxi-
mizes the electronic self-repulsion energy
of the orbitals. Pipek-Mezey method[8]
maximizes the sum of squares of Mulliken
atomic populations. These schemes are
based on an iterative procedure relying
on consecutive 2×2 Jacobi rotations up to
convergence, which is very slow especially
for huge systems and virtual subspaces for
extended basis sets.

Localization in the virtual MO sub-
space is of crucial importance for perfor-
mance of fragmentation computational
methods at Hartree-Fock (HF),[15–17]
Kohn-Sham (KS)[18] and post-HF[19] lev-
els of theory. Subotnik et al.[10] proposed
a method where the atomic orbital (AO)
space is partitioned into minimal basis and
hard virtuals subspaces. Jansík et al.[12]
have generalized the Boys method[1] by
minimizing powers of orbital variance.
They used a trust-region algorithm instead
of Jacobi sweeps, which enables localiza-
tion of virtual orbitals. Other localization
schemes originate from one-particle densi-
ty matrices. Reed and Weinhold have pro-
posed natural localized molecular orbitals
(NLMO)[7] that arise from diagonalization
of the density matrix with ensured mini-
mal mixing between strongly and weakly

occupied natural bond orbitals (NBO).[6]
Cholesky decomposition of the density
matrix was proposed byAquilante et al.[11]

We have recently generalized the re-
gional localized molecular orbital meth-
od[9] into a multi-fragment formulation.[14]
The procedure was efficient and worked
well in both occupied and virtual sub-
spaces. It was argued that RLMO are well
suited forpost-Hartree-Fock (post-HF) cal-
culations. Here we check its performance
in local second-order Møller-Plesset
(LMP2) perturbation theory. The paper is
organized as follows. First, we describe
the RLMO method. Then the LMP2 for-
malism is discussed. After a short section
on computational details, the preliminary
results are reported and, finally, the conclu-
sions are given along with closing remarks.

2. Regional Localized Molecular
Orbitals

RLMOs are obtained directly from the
density matrix (D),[9,14] so no initial orbit-
als are needed. Themain idea of the RLMO
localization procedure is to find a set of ei-
genvectors of D that resembles fragment
molecular orbitals as much as possible. In
principle, there is an infinite number of dif-
ferent sets of eigenvectors since eigenval-
ues of D are extremely degenerate. There
are only two possible eigenvalues at RHF
level of theory. Occupied molecular orbit-
als have eigenvalues (occupation numbers)
equal to 2, while virtual orbitals have ei-
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tions of type (10) as there are (i, j)-pairs
in the P set. The equations are coupled
through the nondiagonal Fock matrix ele-
ments, therefore they have to be solved it-
eratively. Our approach is simpler than the
original LMP2 formulation since virtual
domains are built from orthonormal LMOs
instead of redundant projected AOs.[20]
After reaching convergence E

2
is calcu-

lated from the following equation:

( )∑ ∑
∈ ∈

−=
Pij ijab

ij
ab

ij
ba

ij
ab KTTE

][
2 2 (11)

The formalism is exact and is valid for
each molecular orbital basis sets, including
CMO one. As long as all occupied and vir-
tual pairs are taken into account, the ener-
gies computed from Eqns. (7) and (11) are
identical within assumed accuracy.

The computational costs can be low-
ered by considering the locality of corre-
lation effects. Namely, the correlation for
(i, j)-pair is significant if both orbitals
are spatially near to each other. The vir-
tual orbitals have to be added to [ij], if
they are spatially near to (i, j)-pair. In the
asymptotic limit the number of significant
(i, j)-pairs should grow linearly with the
system’s size. In addition, the size of each
virtual domain is almost the same, there-
fore, the LMP2 formalism should show
linear scaling behavior.

4. Model Systems and
Computational Results

We have chosen two model systems,
namely n-pentadecane and trans-retinal,
to test the adequacy of LMP2 formalism
in the RLMO basis set. The first system is
taken in all-trans conformation and has on-
ly σ-bonds. The second molecule possess-
es in addition a system of coupled π-bonds
and one six-member ring. The structure
of both molecules is shown in Fig. 1. The
broken lines indicate how the molecules
were divided into fragments. There are 15
fragments in the n-pentadecane molecule.
Each fragment encloses a carbon atom and
its adjacent hydrogen atoms. The second
molecule was divided into 13 fragments.
The system was never cut through double
bonds since we prefer to preserve σ/π
separation.

Structures of both molecules were opti-
mized at HF/6-31G(d) level of theory using
the GAMESS package.[21] The RLMO lo-
calization and LMP2 schemes were imple-
mented in the GAMESS package. Degree
of localization is described by the normal-
ized partial norm, j

iL ,[14] that measures i-th
orbital’s projection on j-th fragment’s AO
basis. Of course, the i-th orbital is associ-
ated with the j-th fragment and normaliza-
tion means that 1=∑ j

j
iL . Depending on j

iL ,
RLMOs (possibly CMOs) are classified

genvalues equal to 0. Each rotation ofMOs
within the occupied or virtual subspace
gives another set of eigenvectors. CMOs
are of special importance since in addition
they diagonalize the Fock matrix.

The RLMO localization procedure was
described elsewhere.[9,14] Here, we give a
short sketch of the localization scheme.
First, the density matrix is transformed to
the orthogonalized AO basis:

DOAO = S1/2DS1/2 (1)

where S is the overlap matrix. Next, the
regional orbital (RO) space is constructed
by the diagonalization of diagonal blocks
(D

i
OAO ) ofDOAO associated with predefined

molecular fragments:

D
i
RO = T

i
†D

i
OAOT

i
(2)

where T
i
collects eigenvectors of i-th mo-

lecular fragment. Their eigenvalues, di-
agonal elements of D

i
RO, fall into one of

the three types: approximately doubly oc-
cupied, singly occupied and empty ROs.
A singly occupied regional orbital appears
only if a covalent bond between fragments
is cut. In this case a hybrid type orbital is
obtained. Hybrid orbitals have partners in
the neighbouring fragments. The full trans-
formation matrix from the OAO to RO ba-
sis set is given by the direct sum:

ii
TT ⊕= (3)

Finally, the density matrix in the RO
basis,

DRO = T†DOAOT (4)

is diagonalized:

DRLMO = U†DROU (5)

This transformation restores the exact
occupation numbers, therefore the diago-
nal elements of DRLMO are equal to 2 or 0.
Back transformation :

TUSC -1/2=RLMO
AO (6)

gives the resultant RLMO. These orbitals
should resemble those of the RO represen-
tation.

3. Local MP2 Formalism

The electron correlation energy can be
approximated by the following second-
order Møller-Plesset (MP2) correction:

( )
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where ε
i
, ε

j
and ε

a
, ε

b
are energies of oc-

cupied and virtual CMOs, respectively.

Two-electron integrals, (ia | jb), are writ-
ten in the chemical notation. This is the
main direct contribution to the correlation
energy for closed-shell systems arising
from double excited configurations. Other
excitations are excluded either due to the
Slater-Condon rules or due to Brillouin
theorem and can contribute to the correla-
tion energy by high order corrections. One
should remember that this very simple
formula is valid only in the CMO basis.
Unfortunately, it also suffers from the de-
localized nature of CMOs. Namely, the
number of significant two-electron inte-
grals scales as O(N4) and transformation
of integrals from the AO to the CMO basis
scales as O(N5). Such scaling properties
are highly unfavorable and make the treat-
ment of large systems practically impos-
sible (CPU and memory usage). On the
other hand, the correlation in isolators is
a very local effect decaying with electron
distance as r−6. This leads at once to the
conclusion that high cost of standard MP2
technique results from the CMO basis set.

The Local MP2 (LMP2) was intro-
duced by Saebø and Pulay.[20] The use of
LMO basis exploits locality of the corre-
lation effect. The formalism is based on
Hylleraas functional:

21100 0ˆ121ˆ1 EEHEH ≥−+− (8)

that provides a variational upper bound
to E

2
. Here, |0〉 is the RHF wave func-

tion, |1〉 is the first order correction to |0〉.
Unperturbed Hamiltonian 0Ĥ is a sum
of Fock operators. The correlation (fluc-
tuation) potential 1Ĥ is a difference be-
tween exact non-relativistic Hamiltonian
and 0Ĥ . Eqn. (8) can be used to derive the
main working equations of LMP2. Here,
we briefly review LMP2 procedure as de-
scribed in ref. [19]. Let us assume that:

abij

Pij ijab

ij
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→
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where ij
abT is an amplitude of ij → ab dou-

ble excitation and |0ij→ab〉 is a double excited
configuration. By P we mean the set of
significant occupied pairs, i.e. the pairs for
which correlation effects are considered.
The symbol [ij] denotes the virtual orbital
domain spanned for the i-th and j-th orbit-
als. By inserting the expansion (9) into in-
equality (8) the following set of equations
can be derived:

∑ ++++=
k

kj
ikkj

ik
ijij FF TTFTFTK0 ij

(10)

where Kij and Tij are matrices indexed by
virtual orbital pairs belonging to [ij] and F
is the corresponding virtual–virtual block
of the Fock matrix. The matrix Kij groups
two-electron integrals [ ij

abK = (ia| jb)] of
the occupied (i, j)-pair with all virtual (a,
b)-pairs from [ij]. There are as many equa-
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occupied CMOs are completely delocal-
ized.Almost 90% of virtual CMO in trans-
retinal are delocalized.

The shape of selected occupied CMOs
and RLMOs for n-pentadecane is shown
in Fig. 3. Panels a and b correspond to
C–C and C–H orbitals, respectively. The
orbitals are completely delocalized and
almost all fragments are involved in their
formation. Panels c and d illustrate occu-
pied RLMOs. They correspond to the C–C
bonding region and CH

2
fragment. Due to

RLMO construction the latter orbitals have
local C

2v
symmetry (approximate symme-

try of diagonal blocks of DOAO). Terminal
CH

3
groups have local C

3v
symmetry. As

long as coupling between ROs is weak this
symmetry is preserved. Notice that final
diagonalization is performed in RO rep-
resentation. Each RO has a well-defined
local symmetry. Therefore, the shape of
these orbitals can be obtained from el-
ementary considerations within a given
point group symmetry (a

1
and b

1
for C

2v
and a

1
and e for C

3v
local symmetries). The

electronic structure of the whole molecule
is composed of such orbitals supplement-
ed by core orbitals. Of course, none of the
RLMOs has a proper system’s symmetry
(C

2v
). The symmetry of C

15
H

32
(all-trans

configuration) caused that core CMOs are
delocalized.

as: (1) very well localized, j
iL ∈[0.99,1];

(2) well localized, j
iL ∈[0.90,0.99); (3)

moderately localized, j
iL ∈[0.75,0.90); (4)

significantly delocalized, j
iL ∈[0.50,0.75);

(5) delocalized, j
iL ∈[0,0.50).

The choice of the correlation space is
crucial for LMP2 performance. The fol-
lowing procedure was adopted. First we
computed the relative Mulliken orbital
populations. Atoms with relative popula-
tion in i-th LMO, A

i
> 0.02 were consid-

ered in the selection criterion.All occupied
pairs with the distance between A

i
and A

j
centers shorter than 8 a.u. [dist(A

i
, A

j
) < 8]

were included in P. The virtual domains
were constructed in slightly different man-
ner. Eqn. (10) was solved for diagonal oc-
cupied pairs [(ii)-pairs]. The virtual orbital
a belonged to [ii] only if the absolute value
of ii

aaT was greater than the threshold value
(0.0001). Virtual domain [ij] includes all
virtual orbitals from the [ii] and [jj] do-
mains. More information how to construct
P set and its virtual domains are given in
our previous paper.[19]

5. Results and Discussion

The quality of localization of RLMOs
is shown in Fig. 2. The upper panel cor-
responds to pentadecane. Pentadecane
is a covalently bonded system. The mol-
ecule is partitioned into fifteen fragments.
All single C–C covalent bonds are broken
by this division. These bonds are restored
during the localization procedure and have
practically a two-center nature. The C–C
bonding orbitals distinguish additional
bonding regions between predefined frag-
ments. Their degree of localization is the
sum of two highest j

iL coefficients. It can
be seen from the histogram 2a that occu-
pied RLMOs (dark gray bars) are at least
well localized. Their degree of localiza-
tion j

iL is always greater than 0.90. As one
should expect, localization in the virtual
subspace is worse than in the occupied one.
Now, 80% of virtual RLMOs are well or
very well localized ( j

iL ≥0.90). Remaining
orbitals constitute moderately localized

( j
iL ∈[0.75,0.90)) and significantly delocal-

ized ( j
iL ∈[0.50,0.75)) categories of orbit-

als. We have not plotted the histograms
showing the quality of localization of
CMOs as all virtual and almost 95% of oc-
cupied orbitals are delocalized ( j

iL <0.50).
Histogram 2b illustrates the quality of lo-
calization for the trans-retinal molecule.
The system of five π-coupled orbitals and
the six-member ring are responsible for a
slightly worse localization as compared to
n-pentadecane. Now, delocalized orbitals
( j
iL <0.50) are present among occupied

RLMOs. Nevertheless, more than 88% or
84% of occupied or virtual RLMOs have
j
iL >0.90. Except for a few core orbitals,

Fig. 1. Conformation
of n-pentadecane (a)
and trans-retinal (b).
The broken lines sep-
arate the molecules
into predefined mo-
lecular fragments.

Fig. 3. Occupied
CMOs (a,b) and
RLMOs (c,d) repre-
senting C–C and C–H
bonding patterns in
n-pentadecane (iso-
value = 0.025).

Fig. 2. Degrees
of localization in
RLMO scheme for
n-pentadecane (a)
and trans-retinal (b).
Entries on horizontal
axes correspond to
1: very well localized,
2: well localized, 3:
moderately localized,
4: significantly delo-
calized, 5: delocalized
RLMOs. Occupied
and virtual RLMOs
are distinguished by
dark and light gray
bars, respectively.
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Two selected CMOs and two selected
RLMOs for trans-retinal are shown in Fig.
4. Panels a and b correspond to occupied
σ and π CMOs. The worst localized σ and
π RLMOs are drawn in panels c and d, re-
spectively. CMOs are completely delocal-
ized. In contrast, delocalizedπ-RLMOs are
spread over four fragments and this mani-
fests the presence of coupled π-bonds in
a system. The worst localized are RLMOs
assigned to fragments belonging to the ring
but even here, a great number of RLMOs is
quite well localized.

The performance of RLMO/LMP2 us-
ing 6-31G(d) basis set for both systems is
summarized in Table 1. For comparative
purposes we have also performed standard
MP2 calculation and LMP2 with Pipek-
Mezey (P-M) localized MO.[8] The num-
ber of important pairs n

ij
in RLMO/LMP2

is halved as compared to CMO calcula-
tions and slightly higher as compared to
P-M calculations. All C–H bonds in P-M
scheme are centered on two atoms only.
In contrast RLMOs of CH

2
fragments are

three-center orbitals while those of termi-
nal CH

3
fragments are four-center orbitals.

This explains the increase in the number
of important pairs. Total number of ij→ab
excitation is only slightly higher at RLMO/
LMP2 than at P-M/LMP2 level as com-
pared to standard MP2 calculations. The
same cutoff criteria used in RLMO/MP2
calculations allow to restore more corre-
lation energy than in M-P/LMP2 calcula-
tions. One should expect such behavior
since RLMOs are more spread in space

than P-M LMOs. Both sets of LMOs re-
produce more than 99% of the correlation
energy. For the second system differences
are more pronounced. The size of molecu-
lar fragments for the trans-retinal mol-
ecule is bigger than for the n-pentadecane
molecule. Therefore, the difference in the
number of important occupied pairs is
more pronounced. The number of double
excited configurations n

ij→ab
, at the RLMO/

LMP2 level of theory is four times lower
than for conventional MP2 calculations.
This ratio is equal to 5.8 for P-M/LMP2
calculations. Again RLMO reference basis
restores more correlation energy than P-M
LMO basis.

The analyzed molecular systems are
relatively small. The advantage of RLMO
basis will be more pronounced for bigger
systems since P-M localization scheme is
very slow in the virtual subspace. For the
n-pentadecane (trans-retinal) molecule,
RLMO procedure is eleven (twelve) times
faster than the P-M scheme.

6. Conclusions

In this paper we have applied RLMOs
to LMP2 calculations. LMP2 takes the
advantage of the localization to reduce
the number of important double excited
configurations. The efficiency of RLMO/
LMP2 electronic structure calculations on
model systems is compared to standard
MP2 and P-M/LMP2 calculations. RLMO
basis reproduces more correlation energy

than P-M basis for the same cutoff criteria
used to construct the correlation space. It is
connected with spatial spreads of RLMOs.
For a σ-bonded system the correlation
space is only slightly larger than within
P-M/LMP2 approach. In a π-conjugated
system differences are more pronounced.
Nevertheless, the correlation space is
much smaller than in the case when CMOs
are used. The results obtained indicate that
RLMOs can be applied at LMP2 level of
theory for bigger systems. Such calcula-
tions are expected to give significant CPU
and memory savings.
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Fig. 4. Occupied
CMOs (a,b) and
RLMOs (c,d) rep-
resenting σ and π
bonding patterns in
trans-retinal (isovalue
= 0.025). RLMOs are
from the delocalized
domain (see the cap-
tion under Fig. 2b).

Table 1. The main characteristics of MP2 and LMP2 calculations: number of important pairs
(nij), size of the correlation space (nij→ab), second-order correction (MP2 correlation energy) to the
energy (E2) and percentage of the restored correlation energy. The first and the second entries
correspond to n-pentadecane and trans-retinal, respectively.

CMO basis RLMO basis P-M basis
n-pentadecane

n
ij

1891 961 851
n
ij→ab

24683223 4471358 4295560
E
2
[a.u.] –2.03958 –2.02973 –2.02590

% of correlation 100 99.52 99.32
trans-retinal

n
ij

3081 1753 1512
n
ij→ab

66350875 16343339 11415407
E
2
[a.u.] –2.85268 –2.83151 –2.82025

% of correlation 100 99.26 98.86


