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Abstract:Mn(iii)-catalyzed formal [3+2]- and [3+3]-annulations have been developed using readily available vinyl
azides with 1,3-dicarbonyl compounds and cyclopropanols. Vinyl azides were successfully applied as a three-
atom unit including one nitrogen to prepare various azaheterocycles via Mn(iii)-catalyzed radical reactions.
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1. Introduction

Azaheterocycles are an omnipresent
component of numerous natural alka-
loids and potent pharmaceutical drugs.[1]
Although diverse synthetic approaches
toward azaheterocycles have been exploit-
ed,[2] there remains a need for conceptu-
ally novel and versatile methodologies
for chemical synthesis of azaheterocycles
from readily available building blocks.
Intermolecular annulation reactions allow
rapid and selective construction of complex
cyclic molecules in a one-pot manner from
relatively simple building blocks, which is
one of the most ideal processes in organic
synthesis from atom-[3] and step-[4] eco-
nomical point of views. Guided by these
views, we have recently been interested in
application of vinyl azides as a three-atom
unit including one nitrogen to develop new
types of annulation reactions for synthesis
of azaheterocycles. This review mainly
focuses on the Mn(iii)-catalyzed radical

reactions of 1,3-dicarbonyl compounds
and cyclopropanols with vinyl azides for
a divergent synthesis of azaheterocycles,
which have been recently developed in our
research group at Nanyang Technological
University, Singapore.[5]

2. Backgrounds of Vinyl Azides and
Mn(iii)-Mediated Oxidative Radical
Reactions

Vinyl azides are readily prepared from
commercially available starting materi-
als in several ways, and generally stable/
easy to handle.[6] The application of vinyl
azides to synthetic organic reactions have
been exclusively relied on their thermal
denitrogenative decomposition to vinyl
nitrenes, which could be converted into
highly reactive strained three-membered
ring, 2H-azirines (Scheme 1).[7] Heating
of azido cinnamates in aprotic solvents
(for example, xylene at 140 °C) gave in-
doles via aromatic C–H amination of puta-
tive 2H-azirine intermediates, which have
been widely utilized for synthesis of indole
alkaloids and potent pharmaceutical drugs
bearing indole cores.[8,9]

We planned to use the C=C bond of
vinyl azides for initiation of the reactions.
Although such attempts have been ex-
tremely scarce, we could get two key hints

from the following literature precedents
to implement our research projects with a
radical strategy.

The 1st key: In 1975, Suzuki reported
the reaction of α-azido styrene with trieth-
ylborane, which provided butyrophenone
after aqueous workup (Scheme 2).[10] In
1983, Roberts had clarified the reaction
mechanism of this C–C bond forming
reaction,[11] which included a free radical
process. An ethyl radical generated from
triethylborane with molecular oxygen adds
to the C=C bond of α-azido styrene to give
the α-azido radical, which undergoes
quick denitrogenation to afford an imi-
nyl radical. The reaction of the resulting
iminyl radical reacts with triethylborane to
generate an ethyl radical that maintains the
radical chain. The resulting iminylborane
is hydrolyzed under work-up to give bu-
tyrophenone.

The 2nd key: Manganese(iii)-
mediated oxidative radical reactions have
been extensively studied to construct new
C–C bonds since the pioneering reactions
of acetic acid with alkenes mediated by
Mn(iii) acetate were reported in 1968.[12]
Especially, this Mn(iii)-mediated oxida-
tive radical strategy has been applied for
the reactions of 1,3-dicarbonyl compounds
with various carbon–carbon unsaturated
bonds in both inter- and intramolecular
manners, leading to highly functionalized
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an iminyl radical. The iminyl radical then
intramolecularly forms a C–N bond by the
cyclization with the C=O bond, leading to
various azaheterocycles (Scheme 4). This
process could potentially be achieved via
a redox catalytic manner featured by the
two key redox steps: i) oxidative genera-
tion of the radical species by the reaction of
radical sources with metal oxidant [MnIII]
(to be [MnII]) (oxidative initiation) and ii)
reduction of the resulting iminyl radical by
[MnII] followed by cyclization and proton-
ation to afford azaheterocycles along with
regeneration of metal oxidant [MnIII] (re-
ductive termination). This review focuses
on this Mn(iii)-catalyzed radical reactions
of vinyl azides for synthesis of nitrogen-
containing heterocycles.

3.1 Mn(iii)-Catalyzed Radical
Reactions of Vinyl Azides and
1,3-Dicarbonyl Compounds

Based on the hypothesis, we have suc-
ceeded in developing Mn(iii)-catalyzed
reactions of vinyl azides with 1,3-di-
carbonyl compounds for synthesis of
multi-substituted pyrroles, that could be
characterized as a formal [3+2]-annula-
tion process.[15] The reactions of α-azido
styrene with β-keto ester, 1,3-diketone,
and β-keto acid using Mn(iii) catalysts
are shown in Scheme 5. Interestingly, for
each kind of 1,3-dicarbonyl compounds,
the preferential Mn(iii)-catalyst is varied,

organic molecules (Scheme 3).[13] From a
mechanistic point of view, initially formed
Mn(iii)-enolates undergo rapid loss of
Mn(ii) to give α-carbonyl radicals, which
form a new C–C bond with alkenes or al-
kynes. Similarly, this Mn(iii)-mediated
oxidative manner can be served for gen-
eration of β-carbonyl radicals from cyclo-
propanols.[14]However, these strategies ba-
sically need superstoichiometric amounts
of Mn(iii) complexes to complete the reac-
tions because the resulting carbon radicals
should be terminated by some oxidative
manners (i.e. further oxidation to carboca-
tions) under the reaction conditions.

3. Design of Mn(iii)-Catalyzed
Radical Reactions with Vinyl Azides

We speculated that the combination of
the two above-mentioned radical concepts,
namely, i) addition of carbon radicals on-
to vinyl azides and ii) Mn(iii)-mediated
oxidative radical reactions using 1,3-di-
carbonyl compounds or cyclopropanols,
could lead to unique Mn(iii)-catalyzed
radical reactions (Scheme 4). Our reac-
tion design involves the addition of a
carbon radical bearing a carbonyl group
to the C=C bond of a vinyl azide to pro-
vide a new C–C bond with generation of
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I[19] followed by its radical addition to vi-
nyl azide is involved in the reactionmecha-
nism, forming iminyl manganese(iii) II-eq
and II-ax placing an imimyl tether in the
equatorial- and axial-like position, respec-
tively. Conformational inversion of II-eq
to II-ax should be indispensable to achieve
the further cyclization of the iminyl man-
ganese II-ax with the carbonyl group to
give alkoxy manganese(iii) species III
that could be protonated to afford 2-azabi-
cyclo[3.3.1]non-2-en-1-ol.

With the preparation method for 2-az-
abicyclo[3.3.1]non-2-en-1-ol, we then
explored their transformations to 2-azabi-
cyclo[3.3.1]nonane (morphan) or 2-azabi-
cyclo[3.3.1]non-2-ene frameworks, which
are prevalent in several natural alkaloids as
well as biologically active molecules.[20]
Treatment of 2-azabicyclo[3.3.1]non-2-
en-1-ol with NaBH

3
CN in the presence

of HCl induced the double hydride reduc-
tion of the C=N and C–O bonds, afford-
ing 2-azabicyclo[3.3.1]nonane stereose-
lectively in 70% yield (Scheme 8). The
first hydride attacked to the C=N bond
entirely from the less hindered exo-face
to form aminal I. Subsequent dehydration
of I gave the bridgehead iminium species
II, which could be reduced by one more
hydride to afford 2-azabicyclo[3.3.1]non-
2-en-1-ol.

It was found that a one-pot conversion
could be achieved starting from the reac-
tion of vinyl azides and cyclopropanols
using Mn(acac)

3
as a catalyst followed

by treatment with NaBH
3
CN (3 equiv.)

with HCl (3 equiv.), producing 2-azabicy-
clo[3.3.1]nonanes in good yields without
isolation of 2-azabicyclo[3.3.1]non-2-en-
1-ols (Scheme 9). This one-pot/two-step
process represented a straightforward pro-
cedure for construction of the morphan

depending on the nature of 1,3-dicarbonyl
compounds as well as the redox potentials
of Mn(iii) catalysts.[16] As a consequence,
Mn(OAc)

3
·2H

2
O was an effective catalyst

for the reactions of vinyl azides and β-keto
esters, while a stronger oxidant, Mn(pic)

3
,

is required for the reactions with 1,3-dik-
etones. On the other hand, Mn(acac)

3
was

preferred for the reactions of vinyl azides
and β-keto acids. These [3+2]-annulation
strategies have a general and wide scope
on substituents of both vinyl azides and
1,3-dicarbonyl compounds to give a vari-
ety of pyrroles in good yields.

3.2 Mn(iii)-Catalyzed Radical
Reactions of Vinyl Azides and
Cyclopropanols[17]

We next focused on the use of cyclo-
propanols as a precursor of β-carbonyl
radicals and investigated their addition
reactions toward vinyl azides followed by
C–N bond formation (formal [3+3]-annu-
lation). The reactions of α-azidostyrene
and 1-phenylcyclopropanol were inves-
tigated to target 2,6-diphenylpyridine

(Scheme 6). It was revealed that treatment
of a mixture of vinyl azide and cyclopro-
panol with a catalytic amount ofMn(acac)

3
(10mol%) inMeOH consumed vinyl azide
within 5 min at room temperature, and the
subsequent addition of oxygen (1 atm O

2
as an atmosphere) and HCl (2 equiv.) pro-
vided the desired 2,6-diphenylpyridine in
80% yield. A wide scope was shown in
the substituents of vinyl azides as well as
cyclopropanols, and some representative
examples were described below.

Next, we envisioned utilizing bicy-
clic cyclopropanols such as bicyclo[3.1.0]
hexan-1-ol as a source of β-carbonyl
radicals (Scheme 7). Interestingly, an un-
usual 2-azabicyclo[3.3.1]non-2-en-1-ol
was isolated in 89% yield by the reaction
with α-azidostyrene using only a cata-
lytic amount of Mn(acac)

3
(5 mol%). It

is noteworthy that treatment of optically
active cyclopropanol (85% ee)[18] with
α-azidostyrene afforded the racemic prod-
uct. No transmission of the chirality of cy-
clopropanol would suggest that generation
of achiral ring-expandedβ-carbonyl radical

+
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framework from readily available vinyl
azides and bicyclic cyclopropanols.

Further methods for reduction of the
C–O bond at the bridgehead position were
explored using acetate prepared from 2-az-
abicyclo[3.3.1]non-2-en-1-ol (Scheme10).
Interestingly, TiCl

4
-mediated reduction

of acetate with Et
3
SiH induced selective

C–O bond cleavage, affording 2-azabicy-
clo[3.3.1]non-2-ene in 90% yield keeping
the C=N bond intact. Similarly, treatment
with allyltrimethylsilane-TiCl

4
or Me

3
Al

provided a new quaternary carbon center
at the bridgehead position. These transfor-
mations might proceed via a bridgehead
carbocation, which was then immediately
trapped by present nucleophiles.

Stimulated by the one-pot process de-
veloped to prepare 2-azabicyclo[3.3.1]
nonanes (Scheme 9), the same proce-
dure was employed to the reaction of
α-azidostyrenes and bicyclo[4.1.0]heptan-

1-ol to synthesize 2-azabicyclo[4.3.1]dec-
ane derivatives. To our delight, 2-azabicyc-
lo[4.3.1]decanes were obtained as a single
diastereoisomer via double hydride reduc-
tions of the C=N and C–O bonds of the re-
sulting 2-azabicyclo[4.3.1]dec-2-en-1-ols.
Subsequent protection of N–H amine with
Cbz-Cl providedN-benzyloxycarbonyl de-
rivatives in good yields from vinyl azides
(Scheme 11).

Melinonine-E (1) was isolated from
the bark of Strychnos melinoniana,[21] and
its structure was characterized by a unique
pentacyclic ring system including
indolo[2,3-a]quinolizidine and morphan
frameworks.[22] The first synthesis of
(±)-melinonine-E was accomplished by
Bonjoch.[23] We envisioned that the 2-az-
abicyclo[3.3.1]nonane moiety of melino-
nine-E would be constructed by Mn(iii)-
mediated [3+3]-annulation of α-indolyl
vinyl azide 2 and bicyclic cyclopropanol 3

bearingahydroxymethyl tether followedby
reduction of the C=N and bridgehead C–O
bonds. [3+3]-Annulation ofα-indolylvinyl
azide 2 and bicyclic cyclopropanol 3 af-
forded azabicyclic compound 4 in 88%
yield in a 2 g scale in a diastereoselective
manner (exo:endo = 85:15), although it
needed 1.6 equiv. ofMn(acac)

3
to complete

the reaction (Scheme 12).After conversion
of 4 into its acetate, the bridgehead C–O
bond was reduced by the Et

3
SiH-TiCl

4
pro-

tocol to afford cyclic imine 5. Subsequent
reduction of the C=N bond of 5 with AlH

3
prepared from LiAlH

4
–AlCl

3
, leading to

not only the entire reduction of imine and
N-tosyl moieties but also partial depro-
tection of the TBDPS group. Reductive
N-alkylation of the resulting N–H amines
of 6 with dimethoxyacetaldehyde in the
presence of NaBH(OAc)

3
provided 7 and

8 in 43% and 12% yield, respectively. The
remaining TBDPS group of 7was removed
with n-Bu

4
NF. BBr

3
-induced cyclization

of 8 proceeded cleanly to afford the cyclic
alcohol 9, which further underwent dehy-
dration with maleic acid in water followed
by dehydrogenation with palladium black
in one-pot manner, affording (±)-melin-
onine-E (1) as a perchlorate salt in 44%
yield from 8. The 1H and 13C NMR data
of the synthetic (±)-melinonine-E perchlo-
rate were identical to those of the reported
ones.

4. Conclusions

Wehave developed a divergent synthet-
ic route to construct azaheterocycles from
readily available vinyl azides and 1,3-di-
carbonyl compounds/cyclopropanols via
formal [3+2]- or [3+3]-annulation using
Mn(iii) complexes. A series of azahet-
erocycles such as pyrroles, pyridines, and
azabicyclic compounds have been success-
fully prepared by utilizing this promising
strategy. Further investigation to explore
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other modes of annulation reactions of
vinyl azides to prepare azaheterocycles is
currently underway.
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