
386 CHIMIA 2012, 66, No. 6 Organic Free radicals

doi:10.2533/chimia.2012.386 Chimia 66 (2012) 386–388 © Schweizerische Chemische Gesellschaft

*Correspondence: Prof. Dr. K. Severin
Institut des Sciences et Ingénierie Chimiques
École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne
Tel.: +41 21 693 9312
Fax: +41 21 693 9305
E-mail: kay.severin@epfl.ch
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Abstract:Certain rutheniumcomplexesarepotentcatalysts foratomtransfer radicaladdition (ATRA)andcyclization
(ATRC) reactions, in particular if they are used in conjunction with reducing agents such as magnesium. This short
overview summarizes recent developments in this area with special focus on contributions from our laboratory.
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1. Introduction

Organohalides can be coupled to ole-
fins via atom transfer radical addition
(ATRA) reactions (Scheme 1a). This type
of reaction was first described by Kharasch
and his group in the 1940s using free radi-
cal initiators or light.[1] Later, it was shown
that transition metal complexes are able
to catalyze ATRA reactions.[2] The metal
complexes act as halogen atom transfer
reagents and reduced the amount of side
products (e.g. polymers). Over the last
years, metal catalysts for ATRA reactions
have been optimized and interesting ap-
plications in organic synthesis have been
developed.[3] Of particular interest is the
intramolecular ATRA, commonly referred
to as atom transfer radical cyclization
(ATRC, Scheme 1b). This reaction is par-
ticularly efficient for the construction of
five- and six-membered ring systems.[4]
ATRA and ATRC reactions are catalyzed
by complexes of different transition metal
elements, with the highest activity typi-
cally found for complexes of copper and
ruthenium.[3] Recent developments with
Ru-based catalysts are summarized below.

2. Reducing Agents in Ru-catalyzed
ATRA Reactions

The first report about a Ru-catalyzed
ATRA reaction was published in 1973.[5]
It was shown that RuCl

2
(PPh

3
)
3
catalyzes

the addition of CCl
4
and CHCl

3
to terminal

olefins with good selectivity. Since then,
numerous other Ru complexes have been

evaluated for their ability to catalyzeATRA
and ATRC reactions.[3,6] Some selected
catalysts are depicted in Fig. 1. The studies
on catalyst optimization revealed early on
that catalyst stability was more problemat-
ic than catalyst activity. The half-sandwich
complex Cp*RuCl(PPh

3
)
2
, for example,

was shown to catalyze the addition of
CCl

4
to styrene with a high initial turnover

frequency of 400 h–1. However, the total
turnover number did not exceed 1700.[6n]
In 2006, we showed that the additive
azobis(isobutyronitrile) (AIBN) allows the

catalyst lifetime to be improved substan-
tially.[7] This work was inspired by reports
of Matyjaszewski that AIBN is a very use-
ful additive inmechanistically related atom
transfer radical polymerization (ATRP)
reactions.[3b,8] However, the utilization of
AIBN has also some drawbacks. AIBN
and its decomposition products need to be
separated from the product during purifica-
tion. Furthermore, the reactions have to be
heated because AIBN is not very reactive
at ambient temperature. Most importantly,
AIBN is able to initiate the polymerization
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Fig. 1. Selected ru-
thenium catalysts for
ATRA reactions.
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(BrClCHCF
3
) instead of the toxic trifluo-

romethyl diazomethane.[13]
Sequential reactions involving two

ATRA/ATRC steps have been used to
build complex molecules. For example,
functionalized lactams were obtained by
ATRC-ATRC[14] or by ATRC-ATRA re-
action sequences.[15] We have recently re-
ported that it is possible to perform double
Kharasch reactions with dichlorinated
compounds in a purely intermolecular
fashion (Scheme 3b).[16]TheATRA-ATRA
reaction sequence can be carried out with
two types of olefins allowing the prepara-
tion of structurally diverse 1,5-dichlorides.
The latter are interesting synthetic precur-
sors as demonstrated by the synthesis of
cyclopentanes by Mg-induced dechlorina-
tion.

In 1999, it was reported that the 1st
generation Grubbs metathesis catalyst
RuCl

2
(=CPh)(PPy

3
)
2
can mediate ATRA

reactions.[17] Subsequent studies showed
that other metathesis catalysts are also able
to promote ATRA reactions.[6j,6m,18] First
examples of sequential metathesis-ATRC
reactions were described in 1995.[19] It was
demonstrated that the alkylidene complex

of the olefinic substrate, which may result
in an increased amount of polymeric side
products. The latter process is particularly
problematic for highly reactive olefins
such as methacrylates. As alternative addi-
tive, we have introduced magnesium pow-
der, which is cheap, non-toxic, and easy to
handle and to separate. Similar to AIBN,
the additive Mg allows the catalyst loading
to be reduced dramatically.[9] Recently we
have shown that manganese powder can
be an interesting alternative to Mg.[10] It
should be pointed out that AIBN and Mg
have also been used with great success in
Cu-catalyzed ATRA reactions.[11]

The combination of Cp*RuCl
2
(PPh

3
)

with Mg represents one of the most pow-
erful catalytic systems for ATRA/ATRC
reactions described so far.[9c] The system
is also advantageous from a practical
point of view because the RuIII complex
Cp*RuCl

2
(PPh

3
) is air-stable and easy to

synthesize from commercial precursors.
We have performed a mechanistic study
of Cp*RuCl

2
(PPh

3
)/Mg-catalyzed ATRA

reactions using the addition of ethyl tri-
chloroacetate to styrene as a representa-
tive reaction. The key findings are sum-
marized in Scheme 2. In a first step, the
RuIII complex Cp*RuCl

2
(PPh

3
) is reduced

by Mg to the (hypothetical) RuII complex
Cp*RuCl(PPh

3
) (‘activation’). The RuII

complex starts the catalytic cycle by rap-
idly reacting with ethyl trichloroacetate to
give complex Cp*RuCl

2
(PPh

3
) along with

the radical •CCl
2
CO

2
Et. The equilibrium

for this reversible chloro atom transfer re-
action is completely on the side of the RuIII

complex (k
2
> k

-2
). The rate-limiting step

of the reaction is the subsequent coupling
between •CCl

2
CO

2
Et and styrene (k

3
). This

assumption is supported by the UV-Vis and
ESR experiments, which show that the
RuIII complex is the resting state of the re-
action. The main product of the reaction is
formed in a chloro atom transfer between
Cp*RuCl

2
(PPh

3
) and the benzyl radical.

The equilibrium of this reversible reaction
is on the side of RuII complex (k

4
> k

-4
).

The carbon-centered radical •CCl
2
CO

2
Et

can undergo a termination reaction instead
of coupling with styrene. Termination re-
actions would lead to an accumulation
of RuIII complexes, but the excess of Mg
avoids this problem. The role of Mg is
therefore twofold: a) it activates the RuIII

catalyst precursor, and b) it regenerates the
RuII species during the reaction.

3. Sequential Reactions involving
Ru-catalyzed ATRA Reactions

ATRA and ATRC reactions are in-
creasingly being employed in advanced
organic syntheses.[3a] Several groups have
investigated sequential reaction involving

a Ru-catalyzed radical process. We have
shown in 2009 that ATRA reactions can
be followed by a dechlorination reaction
to give cyclopropanes in a one-pot-two-
step procedure (Scheme 3a).[12] Key to
success was again the utilization of Mg
as additive. The ATRA reaction between a
terminal olefin and an activated organodi-
chloride Cl

2
CH(EWG) (EWG = electron

withdrawing group) provides a 1,3-dichlo-
ride. When tetrahydrofuran is added to the
mixture at the end of the ATRA step, a
dechlorination reaction takes place to give
cyclopropanes. For highly activated sub-
strates such as Cl

3
CCO

2
Et or Cl

2
C(CN)

2
,

manganese should be employed as reduc-
ing agent instead of magnesium.[10] These
one-pot procedures are applicable to a
wide range of substrates, and the reac-
tions can also be used to synthesize bicy-
clic cyclopropanes. An advantage of this
method is the fact that functionalized cy-
clopropanes can be obtained without the
utilization of potentially problematic diazo
compounds. The latter point is of particular
importance for trifluoromethyl-substituted
cyclopropanes, which can be prepared
from the commercial anesthetic halothane
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RuCl
2
(=CPh)(PPy

3
)
2
is able to catalyze

ring-closing metathesis-ATRC cascades
to gives bicyclic lactams.[4a] These tandem
reactions can be combined with palladium-
mediated rearrangements,[20] and a bime-
tallic Ru complex was employed instead
of the Grubbs catalysts.[21] Intermolecular
cross-metathesis reactions were also com-
bined with ATRC reactions.[22] We have
shown that it is possible to combine enyne
cross-metathesis reactions with ATRA re-
actions in one pot to give 1,5-dichloropent-
2-ene derivatives.[23] The latter are inter-
esting starting materials for the synthesis
of vinylcyclopropanes by dechlorination
(Scheme 3c).

4. Conclusions

ATRA andATRC reactions can be per-
formed with low catalyst loadings under
mild conditions using ruthenium catalysts
in conjunction with reducing agents such
as Mg. The Ru-catalyzed radical reactions
can be combined with metathesis or de-
chlorination reactions to obtain syntheti-
cally interesting compounds in convenient
one-pot procedures.
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