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Reductive Cleavage of 2,2,2-Trichloroethyl
Esters by Titanocene Catalysis
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Abstract: Esters are of widespread use for protecting carboxylic acids in organic synthesis. However, methods to
cleave esters often employ harsh conditions. Herein, we report a new and mild method for the reductive cleavage
of 2,2,2-trichloroethylesters (TCE esters). Our radical method employs Cp2TiCl as an electron transfer catalyst
and Zn dust as stoichiometric reducing agent. It avoids the use of strong Brønstedt-acids as well as aqueous
conditions and can be carried out at room temperature.
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In principle, the 2,2,2-trichloroethyl
ester group (TCE ester) is a very attrac-
tive protecting group for carboxylic acids.
There are many ways for the mild for-
mation of esters compatible with various
other functional groups.[1] Furthermore,
the TCE moiety contains no stereocenters
and yields sharp signals in 1H-NMR spec-
troscopy (δ = about 5.0), which allows a
straightforward assessment of the protec-
tion or deprotection process.

Mechanistically, the reductive cleav-
age of TCE esters with a base metal (e.g.
Zn, Cd, In) consists of two steps:[2–4] In the
first step, a metal-halogen-exchange reac-
tion takes place and yields a β-metallated
ester. This species inevitably undergoes
fragmentation through 1,2-elimination of a
metal carboxylate and formation of 1,1-di-
chloroethene (Scheme 1).

These methods for the cleavage of
TCE esters require harsh conditions such
as acidic media,[2a,3,4] buffered aqueous
systems,[2b,2c] or elevated temperatures.[2d]
To avoid these conditions, SmI

2
, the cur-

rently most popular electron transfer (ET)
reagent, can be used as an alternative reduc-
ing agent acting in single electron steps.[5]

However, while the use of SmI
2
results in

mild conditions, its price of about 2.60 €/
mmol[6] makes it unattractive for use on
large scale.

Therefore, the development of milder
and cheaper conditions for TCE cleavage
is still of interest. During the past two de-
cades, it was demonstrated that Cp

2
TiCl-

based reagents are mild and selective ET
reagents that can be employed in many
synthethically useful reactions.[7] Hence,
we investigated Cp

2
TiCl as a catalyst for

the deprotection of TCE esters.
Aromatic carboxylic acid esters were

used as substrates, because they are easily
accessible and their reactions are straight-
forward to follow by TLC via UV detec-
tion. Benzoic acid TCE ester was investi-
gated first. In the presence of 2 equiv. Zn
dust and 10 mol-% Cp

2
TiCl

2
in THF as

solvent, only a disappointingly low yield
of deprotected benzoic acid was obtained
(Scheme 2).

We attributed this failure to formation
of an inactive complexofCp

2
TiClwithben-

zoate. If the carboxylate forms a complex
with Cp

2
TiCl, it is most likely that this spe-

cies is catalytically inactive. Furthermore,
it is known that titanocene(iii) complexes
decompose in the presence of strong nu-
cleophiles through loss of one C

5
H

5
– li-

gand.[7] Both effects lead to a depletion
of the catalytic efficiency and hence a low
yield of the desired product.

We tried to shut down this decomposi-
tion pathway by three routes: First, through
formation of a stable O–Si bond by the
carboxylate via silylation with Me

3
SiCl.

The resulting RCO
2
SiMe

3
esters are usu-

ally unstable towards hydrolysis during
aqueous work-up. Second, through forma-
tion of carboxylate complexes with Lewis
acidic metal cations. For this purpose, we
added one equivalent of ZnCl

2
to the re-

action mixture. The aim was to provide a
Lewis acid for the removal of carboxylate
from titanium. Third, through formation of
a stable adduct with the titanocene to pre-
vent formation of the titanocene carboxyl-
ate. To this end, we employed collidinium
chloride (2,4,6-trimethylpyridinium chlo-
ride, Coll·HCl). We have recently shown
that addition of Coll·HCl to solutions of
Cp

2
TiCl greatly stabilizes the titanocene

through formation of the hydrogen-bonded
complex [Coll·H]+[Cp

2
TiCl

2
]– and there-

fore prevents decomposition.[8,9]
The results of the corresponding ex-

periments are shown in Scheme 3. Only
the third approach leads to satisfactory
yields while reducing the reaction time
significantly. These experimental condi-
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Scheme 1. TCE ester
cleavage through
metal-halogen-
exchange followed by
fragmentation.
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Scheme 2. First at-
tempted titanocene
catalyzed deprotec-
tion of benzoic acid
TCE ester.
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tions were used for other substrates. In all
cases, yields in the range of 80% could be
achieved (see Table 1). Without Cp

2
TiCl

2
the reaction is incomplete even after ex-
tended reactions times. Therefore, the step-
wise removal of Cl– via radicals is obvi-
ously faster and more efficient than metal–
halogen-exchange in a two-electron step.

The proposed mechanism for the de-
protection sequence is shown in Scheme
4. The first step is a halogen-atom-abstrac-
tion by Cp

2
TiCl to yield carbon-centered

radical A that is subsequently reduced by a
second equivalent of Cp

2
TiCl. The result-

ing β-metallated ester B undergoes frag-
mentation to yield 1,1-dichloroethene and
titanocene carboxylate C. This carboxyl-
ate, as well as Cp

2
TiCl

2
produced in the

first reaction step, can be reduced by Zn
to regenerate the catalytically active spe-
cies. Coll·HCl does not affect the catalytic
cycle directly but prevents decomposition
of Cp

2
TiCl.

In summary, we have devised a mild
and efficient deprotection protocol forTCE
esters. The use of radical intermediates is
crucial for the success of the reaction.
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Table 1. Results of further deprotection experiments
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Scheme 4. Reaction mechanism for the catalytic radical deprotection of TCE esters with Cp2TiCl
as catalyst.

Scheme 3. Results of
experiments with ad-
ditives to the reaction
mixture.O
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