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Abstract: The evolution of chemistry associated with the photoinduced electron transfer (PET)-generated
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by the synthesis of several novel glycosidase inhibitors.
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1. Introduction

Nitrogen-containing heterocycles, such
as pyrrolidines, piperidines, pyrrolizidines,
indolizidines and quinolizidines are ubiq-
uitous in a large number of naturally oc-
curring alkaloids and pharmaceuticals
which are endowed with diverse biologi-
cal activities.[1] Bicyclic amines such as
pyrrolizidines, indolizidines and quino-
lizidines are also present in a large num-
ber of alkaloids isolated from amphibian
skin, which are known to display a variety
of biological activities.[2] Another class
of cyclic amines such as polyhydroxy pi-
peridine, pyrrolizidine, quinolizidine and
indolizidine constitute a distinct subclass,
well known for their glycosidase inhibi-
tory activities.[3] Glycosidase inhibitors
are particularly important in biochemistry
and pharmacology owing to their potent
application in a variety of carbohydrate-
mediated diseases such as HIV, diabetes,
hepatitis, cancer, and viral infections such
as influenza.[4] Therefore, developing an
efficient synthetic strategy to synthesize
substituted cyclic amines[5–9] has engaged
organic chemists over the years.

Although free radicals have evolved as
the most significant reactive intermediates,
due to their versatility, predictability and
functional group tolerance, in the construc-
tion of carbocyclic structural frameworks,
cyclization of corresponding α-amine
radicals, generated through conventional
tributyl tin hydride from N-alkenyl-N-
(phenylthio)methyl amines, to obtain
cyclic amines failed.[10] This failure was
explained by hypothesizing its reduced
radical character due to electronic assis-
tance of nitrogen lone pair to the radical
(Scheme 1).

The above result led us to envision that
if a trimethylsilyl group is attached to the
α-methylene position of a tertiary amine
(9), a radical cationic species (10) gener-
ated on nitrogen would be delocalized be-
tween silicon and nitrogen through overlap
between the filled C–Si σ-orbital and half-
filled nitrogen orbital[11] (Scheme 2) may
undergo an S

N
2-type cyclization process to

a tethered olefin producing a cyclic amine
system as shown in Scheme 2.

Scheme 1. Reactivity
of the merostabilized
radical.
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chemistry was predominant whereas in the
case of 21 and 22 where a six-membered
ring is formed, 1,6-trans stereochemistry
emerged (Scheme 5).

The 1,5-cis stereoselectivity for 24a
and 27a was explained by invoking ‘chair-
like’ transition states 28 analogous to the
ring closure of 2-but-3-enylcycloalkyl
radicals. Similarly, the emergence of trans-
stereochemistry for 25b and 26b was visu-
alized in terms of the ‘chair-like’ transition
state 29 where effective overlap between
the SOMO of the radical cation and olefin
π-orbitals of olefin results in a 1,6-trans-
stereochemistry (Fig. 3).[17]

This stereochemical outcome provided

2. Background of Concept

The above concept emerged from our
broad interest in radical ion chemistry in
general and t-amine radical cation in par-
ticular.[12] The amine radical cations can
be generated efficiently through a pho-
toinduced electron transfer (PET) process,
using 1,4-dicyanonapthalene (DCN) as a
light-harvesting electron acceptor, through
the photoredox cycle shown in Fig. 1.

3. Results and Discussion

Our concept as outlined in Scheme 2
was vindicated when photolysis (450-W
Hanovia lamp housed in a Pyrex vessel,
>300 nm, 2 h), of a mixture of 14a–d and
1,4-dicyanonapthalene (DCN) in iso-pro-
panol produced cyclic amines 15a–d in
high yields[13] (Scheme 3). The reaction
was found to be successful on a variety of
substrates and the entire amount of DCN
was recovered at the end of the reaction.

The most favourable exo-cycliza-
tion product was formed in each case.
Although, according to Beckwith’s radical
cyclization guidelines,[14] cyclization of 16
was supposed to produce exclusively 17a,
it produced a 1:1 diastereomeric mixture of
17a and 17b. Similarly 18 produced a 1:1
mixture of 19a and 19b (Scheme 4).

This unexpected cyclization result was
explained by considering two easily inter-
convertible chair-like transition states (Fig.
2) where the energy barrier for intercon-
version was assumed to be very low.[15,16]
In order to support this explanation, cy-
clization of amines of type 20–23 were

considered as in these cases interconver-
sion would be restricted. The results are
discussed in the next section.

4. Stereoselectivity in the
Cyclization of Cyclic Amines

PET activation of cyclic amines 20–
23 produced the corresponding bicyclic
amines 24–27 with an interesting ste-
reochemical outcome. For example, the
1,5/1,6-stereochemistry was found to be
dependent on the ring size being formed.
In case of 20 and 23 where the new ring
formed was five-membered, 1,5-cis stereo-

Scheme 2. Concept
for the generation of
an α-trimethylsilyl-
methylamine radical
cation.
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oselectivity for this reaction was assumed
to arise due to severe steric interaction of
the axial hydrogens of the acetonide rings
with the bulky 9-BBN moiety (Scheme 9).
Finally debenzylation of 47 by hydrogen-
olysis using Pearlman’s catalyst produced
(+)-isofagomine (36). Following a parallel
protocol starting with l-(+)-tartaric acid,
(–)-isofagomine (ent-36) was also synthe-
sized.[28]

a general route towards synthesizing the
azabicyclo[m.n.o]alkane skeleton, a prev-
alent structural framework in quinazoli-
dine, indazolidine and pyrazolidine type
of alkaloids.[18] This strategy was utilized
for the synthesis of racemic epilupinine[19]
(32) and isoretronecanol[20] (35) as shown
in Scheme 6. The synthesis of these two
natural products substantiated the stereo-
chemical outcome of such cyclizations.

Having established an efficient general
strategy for the synthesis of mono- as well
as bicyclic amines, we envisioned extend-
ing this powerful cyclization protocol for
the synthesis of polyhydroxylated cyclic
amines which are endowed with diverse
biological activities.

5. Synthesis of Polyhydroxylated
Piperidines

Polyhydroxylated piperidines (Fig. 4)
have attracted considerable attention as
glycosidase inhibitors.[3] Glycosidase in-
hibitors are carbohydrate analogues where
nitrogen atoms have replaced one or more
of the oxygen atoms.[21] These alkaloids
are sugar mimics and are widespread in
plants and microorganisms.[22] The ac-
tivities of these compounds are rational-
ized on the basis of their similarities with
the shape and charge of the postulated
oxocarbenium ion intermediate formed
during the glycosidic bond cleavage by
glycosidase enzymes.[23] Such molecules
have also been demonstrated to be a tool
for studying various biological functions
of oligosaccharides.[24] These classes of
compounds have gained widespread inter-
est due to the postulation that they can be
used as therapeutic agents in various car-
bohydrate-mediated diseases[25] likeAIDS,
diabetes, cancer and some viral infections
like influenza.

Due to diverse and interesting proper-
ties associated with these polyhydroxy-
lated cyclic amines, it was not surprising
that their syntheses had attracted consid-
erable attention from chemists around the
globe.[26,27] The main challenge in their
syntheses has been to construct the amino-
methyl group in the piperidine ring vicinal
to a stereocenter starting with the carbo-
hydrates. Many interesting syntheses are
reported to overcome this problem but a
general approach towards this obstacle is
still lacking. Based on our current strategy
of α-trimethylsilylmethylamine radical
cation cyclization, we envisaged a general
strategy for the synthesis of both d- and
l-type of 1-N-iminosugars as shown retro-
synthetically in Scheme 7. We anticipated
that the fully functionalized piperidine
skeleton could be obtained from the suit-
ably placed exo-cyclic olefinic bond as in
41, easily obtainable by the PET cycliza-

tion of 42. Compound 42 could easily be
assembled from an abundantly found natu-
ral chiral resource.

The key irradiation precursor 42 was
easily prepared either from d-(–) or from
l-(+)-tartaric acid by following the simple
synthetic steps shown in Scheme 8.

The PET cyclization of 42 delivered 41
which on hydroboration using 9-BBN fur-
nished 47 as a pure isomer. The trans-stere-

Scheme 6. Synthesis
of epilupinine and
isoretronecanol.

Scheme 8. Synthesis
of the irradiation pre-
cursor for fagomine.
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6. Developing a General
Approach for the Syntheses of
1-N-Iminosugars

As the interest in azasugars grew rap-
idly, many interesting syntheses were
reported.[29] Therefore, we renewed our
interest in the pursuit of synthesizing and
evaluating novel azasugars as glycosidase
inhibitors. The chiral pool approaches
which were available at that time lacked
a general strategy towards various targets
as each time the starting materials required
small or overall modification making syn-
thetic process tedious.[30,31]

Aclose assessment of all 1-N-azasugars
uncovered a universal substitution pattern
as shown in 48. Altering the stereochemi-
cal pattern at C(3) and C(4) and the nature
of the substituent at C(5) would lead to
the synthesis of most of these compounds.
Therefore, a general precursor of type 49
was envisaged to serve the purpose pro-
vided the correct stereochemistry at C(3)
and C(4) and desired functionalization at
C(5) was possible (Fig. 5). This led us to
propose two specific precursors 41 and
ent-41 to synthesize d- and l-threo classes
of 1-N-iminosugars, respectively.

Precursor 41 was utilized for the
synthesis of two azasugars 50 (K

i
/µM =

96, β-glucosidase) and 51 (K
i
/µM = 30,

β-glucosidase) which showed promising
glycosidase inhibitory activity when tested
againstβ-glucosidaseenzyme(Scheme10).

The success in achieving the synthesis
of these important azasugars encouraged us
to visualize the possibility of synthesizing
some of the most important 3,4,5-piperi-
dine triols (52, 53 and 54, Fig. 6), isolated
by Kusano and coworkers in 1995 from the
extract of the plantEupatorium fortunei.[32]
These polyhydroxy piperidines were con-
sidered as the derivative of deoxynojirimy-
cin and they exhibited moderate to good
glycosidase inhibitory activity.[33] These
compounds were also known to be used
in Chinese and Japanese folk medicine as
diuretic, antipyretic, emmenagogue and
antidiabetic agents. These triols were ini-

tially synthesized by Ganem et al.[34] and
other research groups.[35]

It was anticipated that precursor 56
and ent-56 would produce these polyhy-

droxylated piperidines in a straightforward
manner. For example, des(hydroxymethyl)
deoxymannojirimycin (54) could be ob-
tained by following the simple synthetic
protocol as shown in Scheme 11. Synthesis
of des(hydroxymethyl)deoxynojirimycin
(53) was also accomplished by invert-
ing the stereochemistry of the free hy-
droxy group of ent-60 by using standard
Mitsunobu conditions (Scheme 12).[36,37]

7. Synthesis and Evaluation of C(6)
Homologues of 1-Deoxynojirimycin
as Specific Glycosidase Inhibitors

By this time the potential of nojirimy-
cin and its 1-deoxy analogues such as
1-deoxynojirimycin and 1-deoxygalac-
tonojirimycin were established as strong
α- and β-glucosidase inhibitors.[38] Due to

Fig. 5. General pre-
cursor of d- and
l-threo classes of
1-N-iminosugars.

Fig. 6. Some of the
most important
3,4,5-piperidine triols.

Scheme 10.
Synthesis of 5’-de-
oxy-5-epi-isofago-
mine.

Scheme 11. The
synthesis of the de-
oxymannojirimycin
derivative.

Scheme 9. Synthesis
of (+)-isofagomine
and (-)-isofagomine.

Scheme 12.
Synthesis of
des(hydroxymethyl)
deoxynojirimycin.

ent-60aent-60 53
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intense research activities in this field,[39]
two new azasugar-based medicines such as
Miglitol (N-hydroxyethyl DNJ, Glyset or
Diastabol)[40] and Miglustat (N-nBuDNJ,
Zavesca)[41] for the treatment of type II dia-
betes and Gaucher’s disease, respectively,
were introduced. In order to discover a
molecule with better glycosidase inhibito-
ry activities, intense research activities[41]
continued towards synthesizing homoaza-
sugar derivativeswith (CH

2
)-homologation

at C(6) of 1-deoxyazasugars. However,
the major challenge was to find a suitable
route for the synthesis of polyhydroxy pi-
peridines. As we had already established
a novel route for the synthesis of polyhy-
droxy piperidine involving 41, employing
PET cyclization of suitably substituted
α-trimethylsilylmethylamine, we turned
our attention towards synthesizing C(6)
homologuesof1-deoxyazasugars andeval-
uated their glycosidase inhibitionactivities.

Upon vigilant inspection it occurred
to us that template 69, where the strate-
gic exocyclic double bond would enable
proper functionalization, could serve as
a transition point for the synthesis of all
these important azasugars (Fig. 7). This in-
termediate could be synthesized effortless-
ly by the cyclization of 70 employing our
newly developed protocol. The irradiation
precursor 70 could be assembled together
through reductive amination of a chiral
fragment 71 which can be obtained from
l-(+)-tartaric acid and 72. Compound 72
was obtained from 3-aminopropanol utiliz-
ing known synthetic sequences.[35a]

As anticipated the PET cyclization of
70 produced 69 (60% yield) smoothly.
Dihydroxylation of 69 using OsO

4
pro-

duced 73 whose stereochemistry was
confirmed through single crystal X-ray
diffraction study (Scheme 13). Removal
of all protecting groups generated 66.
Furthermore, sodium periodate cleavage
of 66 produced the corresponding bicyclic
ketone which upon reduction with sodium
borohydrideproduced74 as apurediastere-
omer. The stereochemistry was confirmed
by 2D NMR spectroscopy. The removal
of acetonide group using aqueous hydro-
chloric acid produced tetrahydroxy azas-
ugar 65 (K

i
/µM = 1.7, α-galactosidase).

Enantiomeric azasugars of the same series
were also easily synthesized using d-(–)-
tartaric acid.

While this study was in progress, it was
noticed that there was increasing interest
in the evaluation of glycosidase inhibitory
activities of non-basic glyconolactams[43]
such as 75, 76 and 77 (Fig. 8). The origi-
nal mechanistic rationale for inhibitory ac-
tivities of these molecules was attributed to
the involvement of their tautomeric iminol
form, however, later detailed studies sug-
gested the inhibitory activities were solely
due to hydrogen bonding.[44]

Therefore, encouraged by these find-
ings, we synthesized a new non-basic
azasugar 68 from the intermediate 74 by
following the reaction sequences outlined
in Scheme 14. In continuation of our effort Fig. 8. Some non basic azasugars.

Scheme 14.
Synthesis of non ba-
sic azasugars.

Fi 7 So important homol of 1-de ojirim in

Fig. 7. Some impor-
tant homologues of
1-deoxynojirimycin.

68

Scheme 13. Synthesis of azasugars.

nil, β-glucosidase
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to synthesize novel azasugars, molecule 67
having a more basic amino functionality
was also prepared.

By following identical protocols and
starting with d-(–)-tartaric acid, the en-
tire enantiomeric series was also pre-
pared and evaluated. Compound 66 (K

i
/

µM = 28, β-glucosidase) and its enanti-
omer ent-66 (K

i
/µM = 12, β-glucosidase)

showed modest specific inhibition against
β-glucosidase and were found completely
inactive for α-glucosidase. Compound
ent-65 (K

i
/µM = 129, β-glucosidase)

also showed moderate specific inhibition
against β-glucosidase. Inhibitory activities
of other synthesized compounds were not
so encouraging.[45]

8. Synthesis of Conformationally
Restricted Glycosidase Inhibitors

Taking a clue from the previous studies,
it was envisioned that the conformationally
constrained polyhydroxylated β-lactam-
azasugar hybrid molecule of type 85 may
be more potent as the β-lactam ring may
compel the polyhydroxy piperidine ring to
assume a nearly half chair conformation
(mimic of the glycosidase inhibitor’s tran-
sition state) and the carbonyl group may
provide an additional H-bonding site to
the enzyme. The synthesis of 85 was ac-
complished from 74 through simple syn-
thetic transformations shown in Scheme
15. Similarly its corresponding enantiomer
was also obtained from d-(–)-tartaric acid.
The C(10) methylated analogue 86 was
also synthesized from 81.

The inhibitory activities of 85, 86 and
ent-85werestudiedagainstβ-galactosidase
(Aspergillus oryzae), α-galactosidase (cof-
fee beans), β-glucosidase/β-mannosidase
(almonds), α-glucosidase (yeast) and
α-mannosidase (jackbeans), however, un-
fortunately the activities were found to be
poor except for 85 which showed moder-
ate inhibition of β-galactosidase (K

i
/µM =

129, β-galactoidase).[46]

9. Synthesis of Castanospermine-
type Azasugars

After having successfully used
α-trimethylsilylmethylamine radical cati-
on cyclization with tethered olefin to syn-
thesize polyhydroxylated piperdines and
their analogues, we turned our attention
towards applying this strategy to synthe-
size the indolizidine class of polyhydroxy-
lated 1-azabicyclo[4.3.0]nonane alkaloids
such as castanospermine, swainsonine
and other structurally related compounds
(Fig. 9).[47] The structural difference be-
tween these classes of compounds and
1-deoxynojirimycin is only the presence

of an ethylene bridge between the nitro-
gen ring junction and the hydroxymethyl
group. These compounds are known to ex-
hibit glucosidase inhibitory activities and
some of them have also shown antiviral
properties.[48] Since castanospermine on
further study was found to cause osmotic
diarrhoea[49] attempts have been intensi-
fied to synthesize functional analogues of
this molecule to overcome this problem.
Therefore, various stereoisomers of cas-
tenospermine were synthesized,[50] how-
ever, the synthetic steps were too long and
low yielding. This encouraged us to take
up a general route towards the synthesis
of these compounds employing our cycli-
zation strategy. It was anticipated that in-
termediate 96 can be utilized for various

structural manipulations by employing a
simple synthetic sequence. This interme-
diate was easily synthesized by PET cy-
clization of 95 by following the reaction
sequences outlined in Scheme 16. Further,
functional group manipulations provided
1-deoxy-8-epi-castanospermine 91 in ex-
cellent yield. The corresponding amino
analogue 93 was also synthesized from
98 as depicted in Scheme 16. Glycosidase
inhibitory activities for compounds 91, 92
and 93 were studied against different en-
zymes.

Disappointingly all compounds turned
out to be inactive against α-glucosidase
and α-/β-mannosidases. 1-Deoxy-8-epi-
castanospermine 91 showed nonspecific
mild inhibition againstα-galactosidase (K

i
/
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µM = 71, α-galactoidase), β-galactosidase
(K/

i
µM = 73, β-galactoidase) and

β-glucosidase (K
i
/µM=33,β-glucosidase).

We were also disappointed to find that
1-deoxy-8-hydroxymethylcastanosper-
mine 92 and 93 displayed very weak in-
hibitory activity.[51]

Although we synthesized various aza-
sugars starting from tartaric acid where
the stereochemistry of the two hydroxyl
groups was trans, we also became inter-
ested in synthesizing another class of azas-
ugars where two hydroxyl groups would be
cis.[32,52]Towards this end it wasenvisioned
that there could be two enantiomeric inter-
mediates 105 and ent-105 (Scheme 17)
which would lead to the synthesis of these
aza-sugars. It was further hoped that these
two intermediates would arise from the
PET cyclization of 103 and 104, respec-
tively. We envisioned that these two irra-
diation precursors could be made available
via regio- and stereoselective installation of
an acetylenic moiety into d-ribose. In pur-
suit of the intermediate 105, we prepared
99 by known literature procedures,[53] and
the acetylene moiety was installed using
Ohira-Bestmann reagent to produce 102.
Coupling of 102 with benzylsilylmethyl-
amine produced irradiation precursor 103.

However, cyclization of 104→105
(60% yield) indeed, produced unexpected-
ly 106, confirmed by the crystal structure
of 107 produced by its dihydroxylation.
Although, it was disappointing initially,
this strategy provided intermediate 107 in
only six steps compared to a previously
described method from tartaric acid (11
steps). The scope of this protocol for syn-
thesizing a number of new azasugar scaf-
folds was explored and results are summa-
rized in Scheme 18.

The enzyme inhibition studies for
these azasugars were carried out us-
ing β-galactosidase (Aspergillus ory-
zae), α-galactosidase (coffee beans),
β-glucosidase/β-mannosidase (almonds),
α-glucosidase (yeast) and α-mannosidase
(jackbeans) and all of them showed
α-glucosidase specific activities.[54] The
best result was, however, obtained for com-
pound 110 (K

i
/µM = 1.07, α-glucosidase).

10. Synthesis of the Polyhydroxy
Quinolizidine Class of Alkaloids

In order to evaluate further structure–
reactivity relationships of azasugars pos-
sessing azabicyclo[4.4.0]nonane structural
frameworks, compounds such as 116–128
were synthesized and evaluated from pre-
cursors 129 and 130 which were obtaina-
ble by the PET cyclization of 131 and 132,
respectively (Scheme 19). Enzyme inhi-
bition studies were performed with these
newly synthesized azasugars.[55]
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11. Conclusion and Outlook

In summary, we have developed a new
concept of α-trimethylsilylmethylamine
radical cation, generated by photoinduced
electron transfer processes, cyclization to
tethered olefinic moiety for the synthesis
of cyclic amines in general. The chemis-
try has been explored for the synthesis of
stereoselectively substituted pyrrolidines,
piperidines, pyrrolizidines, indolizidines
and quinolizidines. New as well as known
glycosidase inhibitors have been synthe-
sized employing this strategy. It is hoped
that this powerful strategy will increas-
ingly find application in the synthesis of
structurally complex natural products.
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