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Optimal Compounds Discovery by Design
of Experiments and Algorithmic Evolution
of Linear Models
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Abstract: Based on the premise that, for a given class of related chemical compounds, there exists a relationship
between their structure and their properties (i.e. activity), it is demonstrated herein that an elementary algorithm
can readily identify, with simplistic models and without recourse to molecular descriptors, the most active
compounds of a categorical, pre-defined space of molecules. In an actual case study using public experimental
data on two thousand related molecules, D-optimal design of experiments initially identified the best subset of
compounds considered for the construction of simple models. Subsequently, predictions of a first generation of
best candidates, their preparation and inclusion into a new data set, allowed the exploration of the most active
region within the space of interest. Survival of the algorithm by iterative generations ensured that most of the best
(active) compounds had been prepared. A certain partial survival condition, followed by a complete termination
criterion, helped to minimize the total amount of compounds to prepare while identifying the n best individuals
of the matrix.
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Introduction

Research in industrial settings re-
quires using minimal time and resources
to achieve a specific goal. In chemical
companies – pharmaceutical, agrochemi-
cal or others – the research chemist is usu-
ally asked to find the best compounds of
a class without having to prepare many. A
common answer to this problem is based
on the premise that, within a class of
chemical compounds, there is a relation-
ship between structure and activity (SAR,
for Structure–Activity Relationship). By
far the most favoured method to visualize
this function is by changing one parameter
at a time (i.e. replacing one fragment of the
molecule by another), and to observe its ef-
fect on the response. But comparing pairs
of compounds in which a single point (i.e.
substituent) has been modified is sensitive
to the random variability of the respons-
es, especially when they are quite close.
More fundamentally, it makes the severe
assumption that the change of substitu-

ent accounts completely for the variation
observed in the response independently of
the rest of the molecule.[1] In other words,
unless double mutant variations are spe-
cifically conceived and prepared,[2] such
a method implies that interactions are ir-
relevant.

The requirement to find the best com-
pound of a class with minimal time and
resources is particularly suited for the ap-
plication of heuristic methods in problem
solving. As a matter of fact, more optimal
approaches were already invented de-
cades ago,[3] and ever since, a large body
of researchers has endeavoured to model
structure–activity functions using a frac-
tion only of a given chemical class.[4]
These models are particularly useful as
they can help both to understand and pre-
dict the activity.

However, converting a chemical struc-
ture into a usable input for statistical anal-
yses usually requires its ‘translation’ into
continuous descriptors[5] (initial step in
quantitative SAR[6] techniques). Each con-
tribution of a descriptor to the activity is
an unknown to be estimated, and in a typi-
cal QSAR study the relationship between
number of unknowns and number of com-
pounds has to beminimally one, ideally six
to seven. Once a model is then built and
checked for adequacy, the optimal values
of every descriptor can be predicted, leav-
ing the chemist free to conceive a specific
structure that would fit their combination.
A great advantage of QSAR is that the
class of compounds is not limited to a fi-

nite, given set of structures, as for every
combination of continuous descriptors,
there should exist an approaching specific
structure. However, QSAR has also the
disadvantage that information is inevitably
lost when the structures used for building
the model are converted into calculated
descriptors, and when the less significant
descriptors are left out for ease of calcula-
tion. The alternative choice of keeping a
large number of diverse descriptors would
instead bring the problem of intercorrela-
tion, or collinearity of independent vari-
ables. Finally, there will never be a single
molecule able to fit perfectly a combina-
tion of optimal predicted descriptors, and
in the end, a compromise will have to be
reached.

More recently, methods circumventing
the use of conventional descriptors have
begun to emerge.[7]Alongside these some-
times sophisticated algorithms, a simple
alternative to descriptors may easily be
found when the exploration is restricted
to a pre-defined categorical molecular
space,[8] wherein all possible compounds
can be inventoried and numbered. In order
to construct such a space of molecules, ex-
panding from a prototypical compound of
interest (for instance, in Scheme 1, hydro-
genation catalysts), the chemist can divide
the latter into parts (in Scheme 1, A, B and
M), and define arbitrarily, as categorical
levels for every variable, the nature and
number of substituents variations; that
is, different specific A
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poorly. To find the ten best candidates, for
example, without having to make them all,
might quickly appear as a daunting task,
as more than half of the population has no
activity and therefore, gives no informa-
tion as to where is the most active area of
the space.

In exactly such an exercise, Riant and
coworkers demonstrated the use of a ge-
netic algorithm[13] for simulated evolu-

Compounds are then simply described
by the combination of their fragments (for
example, compound A

1
B

3
M

2
), before be-

ing converted into linear equations by the
use of meaningless, dummy variables, as
will be seen later.

A key question is then, how to find the
most active molecule(s) of this categori-
cal space, by making a minimal number of
compounds. Like in classical QSAR,[9] a
good starting point is an optimal Design of
Experiment (DoE).[10] This brings the ad-
vantage of taking into account, if desired
and a priori, possible interactions between
fragments, while minimizing the variance
of prediction with a most diverse and bal-
anced subset of structures. Once all com-
pounds of the data set, defined by this prior
DoE operation, would have been prepared
and their experimental activity measured, a
most simple linear model can be fitted and
used to predict the rest of the molecular
space. Preparing the best n of the remain-
ing compounds and measuring their activ-
ity should lead the chemist into the most
active area of the complete space. But as
with naïve linear models, only a fraction
of the variation in measured activity will
be attributed to the nature of substituents,
an evolution of the algorithm ought to be
envisaged. For example, after a first gener-
ation of potentially active compounds has
been prepared, one can envisage combin-
ing the initial DoE data set with this gen-
eration in a new data set. The very same
model can be built once again, this time
from the augmented set, predictions can be
made, and the best predicted compounds
can be prepared and evaluated. This cycle
is reiterated thus as long as a certain surviv-
al condition stays fulfilled, to ensure that
a large proportion of the best compounds
have been found before meeting a termina-
tion criterion.

The present paper reports the applica-
tion of this algorithm to the exploration of
a pre-defined, categorical population of al-
most two thousand transfer hydrogenation
catalysts, and to the discovery of the best
ten specimens. The influence of arbitrary

factors such as survival and termination
conditions, or the nature of the model, has
also been investigated.

Discussion and Results

In 2009, Riant and Vriamont report-
ed the preparation of a complete library
of transfer hydrogenation catalysts.[11]
Completeness was effected in the sense
that a generic catalyst had been divided
into three parts (A, B and M; Scheme 2),
their levels were defined (respectively 11,
30 and 6) and, in a herculean effort, all
1980 possible molecules were successfully
prepared and evaluated.

The catalysts were evaluated both for
conversion and enantiomeric excess in the
asymmetric reduction of acetophenone,
and their performance was normalised
in a single number (0-1) against the best
catalyst (NPF; Normalised Performance
Factor).[12] As can be seen from Fig. 1,
a very large proportion performed very

A

B

M

Scheme 1.

Fig. 1.

A

B

M

Part A, 11 levels = 11 Specific A1-A11

(only the first eight of which are depicted below)

A1 A2 A3 A4

A5 A7A6 A8

Part B, 30 levels = 30 Specific B1-B30

(only the first six of which are depicted below)

B1 B5 B6B4B2 B3

Part M, 6 levels = 6 Specific M1-M6 from the following precursors
(only the first two of which are depicted):

Precursor to M1 Precursor to M2

Scheme 2.
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a1 b1 c1 m1
a1 b2 c2 m2
a1 b3 c3 m3
a2 b1 c2 m3
a2 b2 c3 m1
a2 b3 c1 m2
a3 b1 c3 m2
a3 b2 c1 m3
a3 b3 c2 m1
Set 1

As can be seen in Set 1, all fragments
(a1 to m3) do indeed appear three times,
and all possible combinations of any two
fragments are represented (i.e. c1 with a1,
but also with a2, a3, b1, b2, b3,m1,m2,m3).
There are seven other sets of nine com-
pounds including a1b1c1m1 that would fit
these two conditions, and be equally good
to start with. This data set is converted into
a system of nine equations, using the defi-
nitions of Eqn. (1), once their experimental
activity would have been measured (y

1
to

y
9
; if we number the compounds of Set 1

from one to nine), written hereafter under
matrix algebraic form:

or, under developed matrix form:

In this case, X is a square data matrix,
and a simple Gaussian elimination would
give the values of the estimators. But we
rather recommend the more general least
squares solutions: if indeed, as will be seen
later in the actual case study, the model
uses more equations than unknowns, the
least squares matrix solution can be ob-
tained from the following equation (Eqn.
(4), where XT is the transpose of X and
(XTX)–1 is the inverse of the product XTX):

Solutions of the normal equations will
deliver the least squares estimators of β

0
to β

8,
and from Eqn. (2), the activity of all

compounds of the space of interest can be
predicted.

Thismain effect model gives in essence
the same predictions as a Free-Wilson
analysis would, and its mechanics mir-
ror almost exactly those of the Fujita-Ban
analysis.[19] However, in our case, the al-
gorithm that started with an optimal subset

tion. They indeed endeavoured to find a
maximum of catalysts among the best ten
of the whole space, without having to pre-
pare more than two hundred of them. This
endeavour is in some respect quite similar
to many of research scenarios in life-sci-
ences companies, with the difference that
the performance (responses) of interesting
molecules is being measured in terms of
in vitro and in vivo biological potencies,
stability, physico-chemical properties and
many others variables, up to the complete
absence of toxicity at the required doses.

Our simple heuristic model, unfolded
below, developed exactly for these scenar-
ios and already in use within our company,
may actually outperform the genetic algo-
rithm proposed by Riant and coworkers.
Even though success was undeniably met
in the search of the best candidates with a
genetic algorithm (around six out of the ten
best were found on average), we realised
indeed that an iterative evolution of simple
linear models should allow the preparation
of fewer compounds before finding a bet-
ter proportion of the best ten catalysts. The
first model would be fitted from a most di-
verse subset of compounds (D-optimal[14]),
and taking into account, a priori, interac-
tion between fragments.

Models Rationale
Because of the length of the models

equations, the mathematical mechanics of
our algorithm will be exemplified with a
different, much smaller imaginary library
composed of 3×3×3×3 specific combina-
tions (Scheme 3).

Without Interactions
A standard[15] main effects model can

be expressed in the following equation
(Eqn. (1)).

yi= 0 + 1x1 + 2x2 + 3x3 + 4x4 + 5x5 +
+ 6x6 + 7x7 + 8x8 +

where y
i
= measured response variable for

the ith compound of the data set, β
0
to β

8

are constants with values that would have
to be estimated from the data set. β

0
, called

the intercept, needs to be associated (ar-
bitrarily) to one specific compound of the
data set (here, say a1b1c1m1), then:

x
1
= 1 if substituent in a is a2, 0 if not

x
2
= 1 if substituent in a is a3, 0 if not

x
3
= 1 if substituent in b is b2, 0 if not

x
4
= 1 if substituent in b is b3, 0 if not

x
5
= 1 if substituent in c is c2, 0 if not

x
6
= 1 if substituent in c is c3, 0 if not

x
7
= 1 if substituent inm ism2, 0 if not

x
8
= 1 if substituent inm ism3, 0 if not

ε = unexplainable, or random, error

The variables x
1
to x

8
are not meaning-

ful independent variables, but dummy in-
dicator variables. Note that even if there
are a total of twelve levels in our space (a1
tom3), it is possible to describe all of them
with only eight dummy variables, because
the four base levels a1, b1, c1 and m1 are
accounted for by the intercept β

0
. On the

choice of the base levels associated to the
intercept will thus depend the attributions,
or coding, of the independent variables x

1
to x

8
.[16]
As we make the implicit assumption,

for one,[17] that the mean of the probability
distribution of the random errors is zero
(E(ε) = 0), our best estimate of ε is zero.
The predicted variable response (activity),
of any compound j of the complete cat-
egorical space, thus becomes

with ŷ
j
= predicted variable response of the

jth compound of the complete space, x
1
to x

8
are defined as above and their coefficients
are the least squares estimates of the model
‘true’ parameters β

0
to β

8
.

In order to numerically solve this pre-
diction equation for any compound, the val-
ues of the coefficient predictors have first
to be found. And in order to find solutions
for these nine unknowns, an equal number
(at least) of equations is to be assembled in
a system. As (i) each different compound
can be associated to a distinct equation,
and (ii) the intercept β

0
has arbitrarily been

chosen to account for the four base levels
a1b1c1m1, eight additional compounds re-
main to be prepared. The key question is
which eight exactly? An optimal design
would require, for example, a global set
of nine compounds containing all possible
substituents an equal and maximal number
of times, with all possible combinations of
any two substituents being present. Such a
design ensures a maximum diversity in the
structures, and as we assume a structure–
activity function, a maximum diversity in
the responses is also expected (from inac-
tive to active).[18] An example may be the
following set of nine catalysts (Set 1).

a

b

m

a1
a2
a3

b1
b2
b3

c1
c2
c3

m1
m2
m3

c

Scheme 3.
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will evolve into generations, and survive to
identify the best n% of the full space before
its termination. Moreover, such a simple
regression analysis can easily be extended
to account for interactions between the
categorical, qualitative variables, as will
be demonstrated in the next case.

With Interactions
If interaction between two specific

fragments would have been foreseen as
likely (or even interactions between all
fragments of any two parts of the prototyp-
ical molecule), then another linear model
can be used in place of Eqn. (1). For ex-
ample, secondary interactions between all
possible specific fragments of parts a and b
are accounted for in the new model written
in Eqn. (5).

yi= 0 + 1x1 + 2x2 + 3x3 + 4x4 + 5x5 +
6x6 + 7x7 + 8x8 + 9(x1x3) +
10(x1x4) + 11(x2x3) + 12(x2x4) +

with the same definitions as (Eqn. (1))
As can be seen from Eqn. (5), thirteen

unknowns are now present (β
0
to β

12
), and

therefore thirteen compounds at least are
required to find their estimators. An op-
timal design might lead this time, for ex-
ample, to the following set of compounds
(Set 2).

a1 b1 c1 m1
a1 b2 c2 m2
a1 b3 c3 m3
a2 b1 c2 m3
a2 b2 c3 m1
a2 b3 c1 m2
a3 b1 c3 m2
a3 b2 c1 m3
a3 b3 c2 m1
a
1
b
1
c
2
m

2
a
2
b
2
c
1
m

3
a
3
b
3
c
3
m

3
a
2
b
1
c
1
m

2

Set 2: in which the first nine individuals
are identical to those of Set 1. All combi-
nations of any two levels of parts being in-
deed already present in Set 1, the other four
extra compounds of Set 2 (ital.) are thus
‘only’ required to equate the number of
compounds with the number of unknowns,
in a new system allowing unique solutions.
This is an optimal starting point composed
of a strict minimum of compounds.[20] The
algorithm now takes into account all inter-
actions between every fragments of parts
a and b.

In a similar way, we could have decided
to introduce more interactions terms in our
model, not only between parts a&b, but
also between b&m, b&c, or any combina-
tions of them.

In the exemplified case where only in-
teractions terms between a&b had been

taken into account, it is noteworthy that the
exact same predictions would have been
found, if instead of dividing the molecule
into four parts, we would have considered
three different ones (Scheme 4), and ig-
nore any interactions!

Indeed, if α'1=[a1b1], α'2=[a1b2] etc.,
the categorical space of eighty-one com-
pounds is identical to the one depicted in
Scheme 3. A linear model without inter-
actions would require 13 compounds, and
from the same, it would lead exactly to
the predictions of the interaction model of
Eqn. (5). This highlights the importance
of how to divide the molecule into parts.
Less of them implies larger data set for pre-
dictions, but also inherently accounts for
‘interactions’ within each individual part,
like part α does for former parts a and b.

Actual Case Study
These simplified cases exemplify suc-

cinctly possible models behind the actual
object of interest, that is, Olivier Riant’s
library of 1980 different catalysts (Scheme
2). With a combination of 11×30×6 frag-
ments (A, B andM), a linearmodel without
interactions would contain 45 unknowns
(1+10+29+5), and require minimally as
many compounds for predictions.

Obviously,we assumed no prior knowl-
edge of any single experimental activity
of the catalyst library, like in a real case
scenario. The difference being that instead
of having to actually prepare and measure
the activity of the compounds identified
in our algorithm, we would simply extract
the information from the work of Riant and
coworkers.

Using the statistical software JMP®9,[21]
we initially planned to perform a design
of experiment to identify which data set
(or generation zero, G0) to prepare. To
maximize our chance to find the most ac-
tive catalysts in the subsequent steps, we
would have liked, a priori, to take into ac-
count interactions. However, interaction
of part B (30 levels) with part A creates
290 (10×29) new unknowns; and with part
M, 145 (29×5) unknowns. As we wanted
to keep the number of catalysts in our ini-
tial data set G0 relatively low (<5% of the

whole), we could only take into account
interactions between parts A&M, creating
only 50 (10×5) new unknowns.

With Interactions
We therefore opted for an optimal de-

sign over A, B, and M, with secondary
interactions between A&M, that is, 45
unknowns for main effects + 50 new un-
knowns for interactions. From a chemical
viewpoint, it is equivalent to having bisect-
ed the prototypical catalyst in parts [AM]
and B, and considering to fit a linear model
without interactions.

JMP®9 defined readily the list of the 95
compounds required, and after we had read
their experimental activity (in this case,
the normalized performance factor, NPF,
being a function of the measured ee and
conversion, ranging from 0-1),[22] we built
a linear model from G0 by implementing
the required matrix operations in Java pro-
graming language.[23]

The system of 95 equations was thus
solved, providing a first formula used to
calculate the predicted NPF for all 1885
remaining compounds. Those predicted
NPF were ranked, and the ten best of the
1885 candidates were ‘prepared’ and their
performance ‘evaluated’. This new, first
generation G1, had a significantly higher
average performance thanG0 (0.34 vs 0.07)
but no individual catalyst was outstanding.
So we decided to iterate the model from
there, but using G0 and G1 combined as a
new data set. By doing so, we were volun-
tarily creating an unbalance in the data set;
this bias towards the more active catalysts
being supposed to help us to explore better
the most active region of space.

From these 105 catalysts (G0 and G1),
we therefore re-built the same linear mod-
el. In this case, there are more equations
than unknowns (over-determined system),
and the Java program returned true least
squares estimators from Eqn. (4). Again,
the predicted activity (NPF) of the 1875 re-
maining catalysts was calculated using the
new solutions, and the best ten predicted
were ‘prepared’ and evaluated (second
generation G2). This time the average NPF
was quite good (0.66), and three catalysts
were performing very well (>0.8).

A question that appeared naturally was
when to stop building new generations of
catalysts. As the former genetic algorithm
had been evaluated by its score on the over-
all top 10, we had also decided to find most
of the top 10 compounds with as few gen-
erations as possible. And had we already
found, in the three generations G0 to G2, the
10 bests catalysts of all? This fact can only
be proven true by looking up all the solu-
tions, but it may possibly be proven wrong
otherwise, without having to. For this, it is
only required to make a new generation G3,
and check that in G3, no catalyst is better

'
'1 '5
'2 '6
'3 '7
'4 '8
'9

m

c1
c2
c3

m1
m2
m3

c

Scheme 4.
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than the tenth best of the 115 belonging to
G0, G1and G2.

If, indeed, at least one catalyst of G3 is
found to be better than the best 10th of the
previous combined generations, it proves
unambiguously that the top ten catalysts of
the whole space had not been found yet.
That is part of the survival condition, al-
lowing our algorithm to enter a new cycle.

If however no better compound than
the 10th best of the samples already made is
found, it obviously does not prove that the
global top 10 had been identified. To com-
pensate for this uncertainty, we decided to
always stop our algorithm after another of
such an unproductive generation. Having
discovered two unproductive generations,
consecutive or not, is then our arbitrary ter-
mination criterion.

As we had found in G1, four catalysts
being more active than the 95 others, we
moved to G2, and in this generation, eight
new catalysts were better than the 10th

best of the 105 others. The third genera-
tion G3, found by modelling the data set
[G0+G1+G2], allowed the identification of
four new catalysts entering the new top 10;
G4 identified three new of such catalysts
again; G5, one and G6, two. At last, G7 did
not identify any new better than the latest
top tenth compound, G8 led to a similar ob-
servation, and the condition to stop evolu-
tion after the second of such an unproduc-
tive generation was fulfilled.

In the end, we had to prepare 175 cata-
lysts, in a total of nine generations, includ-
ing G0. As our algorithm was ended, we
could finally look up in the reference file of
Riant and coworkers and count how many
of the global top ten (present in Table 1)
had been identified.

The full algorithm (from matrix build-
ing to survival and termination criteria)
was implemented in our Java program and
ran thirty-nine more times, from randomly
chosen, different but equally optimal, gen-
erations zero. The average score of the 39
attempts is given in Table 2, along with the
average number of catalysts and genera-
tions required before termination.

On average, 8 catalysts out of the best
10 were found, by having to ‘prepare’ only
180 compounds. Individually, exactly one
third (13 out of the 39 different generations
zero) did actually lead to a perfect 10/10
score.

Without Interactions
In the previous case, we had decided

arbitrarily to account for interactions in our
model and we succeeded in findingmost of
the best catalysts. Without taking interac-
tions into account, G0 would be composed
of only 45 catalysts. The average scores on
forty runs, from as many different, equally
optimal generations zero of 45 compounds
only is given in Table 3.

The number of catalysts to prepare is
significantly lower than in the previous
model, but this is exclusively due to the
smaller size of G0. More details as to the
performance of both algorithms, averaged
on forty runs, can be read from Fig. 2.[24]

Judging a posteriori if the initial choice
to take into account interactions was best
is here a vain enterprise, but in a real case
it would depend on many factors, i.e. the
actual ease of synthesis of the catalysts,
the extra amount of work required to pre-
pare 95 catalysts (G0 with interactions)
compared to 45 (G0 without interactions),
or the importance to find most of the top
ten versus the total number of compounds

to be prepared. A rigorous comparison of
means leads here, with more than 95%
certainty (α = 0.05), to the conclusion that
more compounds of the top ten were found
per generation with the interaction model,
whereas more compounds of the top ten
were found per total compounds to prepare
with the main effects model.

In other words, a higher predictive
power of the interactive model was re-
flected in the need for fewer generations to
find more active compounds, but the main
effects model is in the end more economic,
with an optimal score per total compounds
to prepare.

Regression Analysis of the
Complete Library

With the categorical space being filled
experimentally, it is both possible and in-
formative to check a posteriori which of
the two models (in bold, Table 4) used
here above was the most correct. The same
question may be asked about the other in-
teractions models which we had deliber-

Fig. 2.

Table 1.

Entry Catalyst NPF Found in

1 A
1
B

19
M

2
1 G5

2 A
1
B

17
M

2
0.96 G4

3 A
1
B

4
M

1
0.95

4 A
7
B

4
M

1
0.91

5 A
7
B

19
M

1
0.89 G6

6 A
1
B

20
M

2
0.88 G2

7 A
1
B

11
M

2
0.86 G2

8 A
1
B

22
M

2
0.82 G2

9 A
1
B

15
M

2
0.81 G4

10 A
1
B

9
M

1
0.8 G6

Table 4[25]

Model R2 R2Adj RMSE PRESS

Main Effects (ME) 0.38 0.37 0.131 34.7

ME+A*B 0.49 0.39 0.129 39.6

ME+A*M 0.55 0.53 0.113 26.5

ME+B*M 0.46 0.41 0.127 35.3

ME+A*B+A*M 0.66 0.58 0.107 28.0

ME+A*B+B*M 0.57 0.43 0.124 40.0

ME+A*M+B*M 0.63 0.58 0.106 25.4

ME+A*M+B*M+A*B 0.74 0.65 0.098 25.7

Table 3.

Runs
Average

Score /10 Cat. Gen.

1 to 40 7.25 144 10.9

Table 2.

Run Score
/10 Cat. Gen.

1 - above 8 175 9

2 to 40 7.97 180.4 9.54
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ately left out at the onset of our study. Their
evaluations are summed up below.

F-tests (α = 0.05) for interactions have
been performed on all models, and there
was sufficient evidence to conclude that
not only A and M, but all parts of the ge-
neric catalyst do interact two-by-two. And
it is striking that the most spartan Main
Effects (ME) model, even with a regres-
sion equation explaining only 38% of the
total variation in catalyst performance,
gave out very decent scores.

Influence of the Survival and
Termination Criteria

Undeniably, the excellent start of the
algorithmwith a prior DoE is crucial to this
relative success. Two other elements are al-
so key to this performance: the algorithm
survival and the evolution of generations.
When the model is poor, which for the lin-
ear ones it was certainly safe to assume,
it is essential for the algorithm to survive
long enough, so that every little success
cropped in each cycle adds up to a final,
befitting score. But what if we would have
given the algorithm an extra chance with
three unproductive generations allowed
instead of two? The influence of these
arbitrarily pre-defined conditions was in-
vestigated by running forty times the Main
Effects algorithm with 15 compounds per

generation (entry 2, Table 5), or with three
unproductive generations allowed (entry
3), compared to our standard algorithm
(entry 1).

If the average scores did improve sig-
nificantly in entry 2, the total number of
compounds to prepare seems to deviate
from optimality. But it is worth noting with
entry 3 that opting for a model without in-
teractions, even when they are relevant and
the model is poorer, is slightly better than
choosing a model with interactions, at the
condition to compensate by adopting a less
severe termination criterion. This can be
seen from comparing entry 3 with the re-
sults of Table 2, and eventually visualised
with more details in the box-and-whisker
diagrams of Fig. 3.

A final, legitimate question is about
the size (10 compounds) of generations. It
would only be optimal for certain with a
perfectly predictive model, as a single gen-
eration after G0 would identify the overall
top ten compounds. Even in our case, even
with a large deviation from a perfect pre-
dictivemodel, choosingmore than 10 com-
pounds (entry 2, Table 5) is sub-optimal.

Conclusions

We have shown how iterative genera-
tions of simple linearmodels can be used to
find efficiently the most active compounds
within pre-defined molecular spaces, even
when a large fraction of the space is com-
pletely inactive. A good initial design of
experiment, the knowledge transfer from
one generation to the data set of the next,
and a not-so-severe termination criterion
certainly make up for the simplicity of the
predictive models. All of the algorithms
presented above, including models with
or without interactions, using standard or
larger generations, or even with different
termination criteria, lead to the identifica-
tion of most of the overall best ten com-
pounds, by preparing less than 10% of the
whole matrix.

The algorithmmay easily be adapted to
specific situations: for example, if it costs
time to measure the response, it may be
better to work with a priori more precise
interactive models, as fewer generations
are required. And if it is desired instead to
find most, if not all, of the top n, the size of

generations and the termination condition
can be tuned to maximize the score.

It is also crucial, if the most active com-
pound has been found but is not up to the
expectations, to perform a post-algorithm
interpretation.[26] Due to its simplicity, the
models presented in this paper are particu-
larly well suited for this essential opera-
tion. A qualitative analysis of the data, in
order to try to understand why such are
active where others are not, and to gener-
ate hypotheses, is required to build new
spaces, or expand the existing one. The
algorithm may well be useful for optimis-
ing search time, but it is only the first step
in a more global strategy. A proper inter-
pretation remains imperative for breaking
the boundaries of the arbitrarily predefined
space of molecules.

Assuming that for a given property,
there exists a structure–response relation-
ship, such a method may be used for all
types of properties. Within our company,
Syngenta, chemical structures are linked to
in vivo biological activity on insects, fungi,
plants and nematodes.They are also used to
collect experimental data on toxicity, me-
tabolism, uptake, stability, and many more
properties. The relationships between the
structures and all these responses are obvi-
ously different, but if they indeed exist, a
single optimal data set, obtained from DoE
techniques, remains valid for assessing dif-
ferent models for each response. A com-
promise can then be looked for in the pre-
dictions. The algorithm described in this
paper makes here a first step into the laby-
rinthine paths of multi-optimisation,[27] in
the hope to lead more efficiently to the best
chemical candidates for development.
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