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A Journey from the Pool of Chiral
Synthetic Building Blocks to Cell-
Penetrating Peptides, to a Novel Type
of Enzyme – and back

Dieter Seebach*

Abstract: The roles of polyhydroxy-butyrates/alkanoates (PHB/PHA) in biology, for the preparation of chiral
building blocks, and as a source of inspiration for the discovery of β- and γ-peptides are discussed. The syntheses
and structures of β-peptides are outlined. The prerequisites for mimicking peptide/protein interactions with
β-peptides and two examples are presented. Single terminal β-amino-acid residues can lead to stabilization
of peptides (cf. NTS(8-13)) in plasma. Cell-penetrating α-l-, α-d-, mixed α-l/d- and β-oligoarginines (OAs) and
-oligoprolines, as well as the mechanism(s) of internalization are compared. Recent studies show that infected
erythrocytes, parasitic organisms and mycobacteria are entered by OA-derivatives, which have been employed
as transporters of the antibiotic fosmidomycin. While β-peptides are generally enzymatically stable (for days
in mammals), a microorganism (S. xenopeptidilytica) with an Ntn enzyme (3-2W4 BapA) was discovered that
cleaves only β-peptides, and that was applied in preparations of (enantiopure) β-amino acids and β-peptides.

Keywords: Cell-penetrating peptides · Fosmidomycin · Oligoarginines · Polyhydroxybutyrate · β-Peptides ·
Peptidomimetics · Terminal homologation of peptides

1. Introduction

The history of peptide chemistry in our
group[1] has its origin in the early work on
the pool of chiral building blocks (‘chi-
ral pool’),[2] when we used 3-hydroxy-
butanoates[3] and other readily available
enantiopure natural products[4] to prepare
macrodiolides,[5] chiral dendrimers,[6] and
α-branched amino acids.[7] Key intermedi-
ates in these investigations were, among
others, lithium enolates of the general for-
mulae 1–5[8] (Fig. 1). The most abundant
source of (R)-3-hydroxybutanoic acid is
its polymer (PHB), a microbial storage
material and a component of all biological
cells, where it is a posttranslational appen-
dix of proteins and a component of com-
plexes with polyphosphate (polyP) and
nucleic acids; the results of investigations
of PHB over the past decades can be put in
a nutshell by the statement “no life on this
planet without PHB”.[3,9] Fascinated by
this role of a simple polyester we searched
for structural information to find that the
PHB-backbone is extremely flexible in
solution, while in the solid state, in phos-

pholipid bilayers and in complexes with
polyP it may adopt an (M)-2

1
- or a (P)-3

1
-

helical structure[3c] (Fig. 2a). Inspection of
the 3

1
-helix led to the idea to replace the

chain-bound oxygen by NH to stabilize
the helix by hydrogen bonding. This led to
β-peptides, which indeed, fold to helices in
solution (Fig. 2b).

2. Synthesis

In between the idea and the discovery
of the world of β-, and later of γ-peptides
(Fig. 3), lay hard-core organic synthesis
with a large group of coworkers for many
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Fig. 2. Helices of β-hydroxy- and β-amino-acid oligomers. a) The cyclic HB hexamer has the
shape of the number 8, with 2 (P)-helical pitches, from which the 31-helix was constructed in
silico.[3] b) NMR Structure of a β3-dodecapeptide in solution.[10]
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chosen in such a way that a strand is en-
forced, which can not aggregate to a sheet,
and a sheet structure can be created that
can not possibly fold to a turn or helix,
while α-peptidic chains with very simi-
lar sequences may be found either as part
of sheets or of helices. There is no mac-

years (Fig. 4).[10] There are only four types
of α-amino acids ((l), (d), α-branched
such as Aib, and cyclic, such as Pro). In
contrast, the β-amino acids can carry the
substituent in the 3- or 2-position, and
they may be geminally disubstituted in
these positions, or can be cyclic (2-amino-
cyclopentane or -cyclohexane carboxyclic
acid[11]), so that a much larger structural
variety results (Fig. 4, center). For the syn-
theses of the most simple β3- and β2-amino
acids we used the Arndt-Eistert homolo-
gation and a modified Evans-auxiliary
application, respectively. While 18 of the
20 β3-aminoacids with proteinogenic side
chains (ready for solid-phase coupling by
the Fmoc strategy) are now commercial,
most of the β2-analogs and other types of
derivatives have to be tediously prepared
as shown for β2h-histidine in Fig. 5.[12] The
effort was rewarding in many respects.

3. Structures

Depending upon the substitution pat-
terns (constitution) and upon the (relative
and absolute) configurations of the resi-
dues a ‘brave new world’ of peptide struc-
tures[13]was uncovered.Aswithα-peptides

and proteins, there are all the structural
elements (strand, sheet, turn, helix) but
with different dimensions, distances, po-
larities, stabilities and exclusivities (Fig.
4). Generally, the secondary structures are
more stable than those of the α-peptidic
counterparts. Also, the sequences can be

Fig. 3. Relationship between α-, β3-, β2- and γ4-peptides with the proteinogenic side chains R. For
further structural variations see Fig. 4. Our research was restricted to peptides consisting of ho-
mologated proteinogenic amino acids[10] lacking the back-bone fortifying effects of cyclic amino-
carboxylic acid residues.[11]
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Fig. 4. Various types of β-amino acids (center), various residue sequences and the corresponding structures of β-peptides with proteinogenic side
chains.[10]
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rodipole destabilization of the β-peptidic
3
14
-helix. Furthermore, a peculiar, novel

type of 2.7
10/12

-helix is formed by sequenc-
es of alternating β2- and β3-aminoacid resi-
dues, with no resulting macrodipole, con-
sisting of narrow 10-membered and wider
12-membered hydrogen bonded pitches.
After a learning process of approximately
eight years between discovery[14] and a
comprehensive review[10b] we were able
to create these secondary structures by de-
sign.

4. Biological Investigations

The β- and γ-amino acid residues of
the new peptides do not fit into active sites
of peptidases or metabolizing enzymes
(Fig. 6). Thus, like α-d-peptides,[15] the
β-peptides are excreted unchanged after
administration to mammals,[10b,16] suggest-
ing that there is no interaction ofβ-peptides
with proteins (PPI), i.e.with the active sites
of proteases and metabolizing enzymes. In
fact, there can be no mixed α/β-peptide
sheet or helical zipper[17] (Fig. 7a). On the
other hand, structurally not so strictly de-
fined interactions, such as polar binding of
anchoring groups in pockets, hydrophobic
binding of amphipathic helices in non-po-
lar grooves, or ‘face-to-face’ interactions
between large surface areas of proteins
and their ligands can be mimicked with
β-peptides (Fig. 7b), see a review article
entitled ‘β-Peptidic Peptidomimetics’.[18]
Another biological process, in which no
PPI is involved, is the cell penetration of
polycationic peptides (CPPs) and other
polyelectrolytic compounds. Nature uses
this surprising effect for carrying proteins
(cf. HIV-Tat) into cells, most commonly
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Fig. 5. Preparation of Fmoc-β2h-His(Trit)-OH from des-amino-histidine[12a] in eight steps (overall yield 11%), using the modified Evans auxiliary with
5.5-diphenyl-substitution on the oxazolidinone ring (DIOZ[12b]).
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Fig. 6. β-Peptides are stable in essentially all organisms tested so far (for an exception see Fig.
11). The β-amino-acid residues are not recognized by exo- or endo-peptidases, or by metaboliz-
ing enzymes (cf. glucuronylation in insects), see section 10 in the review article in ref. [10b], and
ref. [16].
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Fig. 7. Peptide–peptide and peptide–protein interactions (PPIs). a) Mixed α/β-peptide sheets or
zippers are structurally ‘forbidden’. b) Possible PPIs between β-peptides and protein receptors
(examples are the binding of β-peptidic ligands to CD40, MHCs, GPCRs, SR-B1, hDM2 receptors
and the helix-protein interaction in hIL-8, see refs [10b] and [18] and references cited therein).



PePtide Science in Switzerland CHIMIA 2013, 67, Nr. 12 847

with arginine-rich peptide sequences. In
spite of numerous investigations into the
mechanism, the details are still being dis-
cussed.Since thepolycationic species, such
as oligoarginines, do not pass the phospho-
lipid bilayer of vesicles, which are often
used as simple models for cell walls, since
no trans-membrane transporter is involved,
and since endocytotic entry was excluded
in many cases, the potential across the cell
wall, generated by proton and ion pumps,
was proposed to play a major role.[19]
Amidinium and guanidinium ions are
known[20] to form thermodynamically sta-
ble salts with carboxylates (cf. phosphati-
dylserine), phosphates (cf. phospholipids)
and sulfates (cf. heparan sulfate) (Fig. 8),
and formation of polycation–counterion
complexes of this type is considered deci-
sive for cell penetration.[21]

β-Oligoarginines (β-OAs) appear to
enter eukaryotic cells especially fast (Fig.
9b),[10b] which may be due to the fact that
in a strand conformation the positively
charged side chains, repelling each other,
are all on the same face of the chain, which
should lead to a higher affinity for lipophil-
ic counterions (Fig. 9a). Like α-OAs the

β-AOs do not enter healthy erythrocytes
but infected ones,[22a] and they are able to
penetrate through the most elaborate cell
walls of mycobacteria (Fig. 9c) and para-

sitic species to deliver drug cargoes[19b,22b]
(Fig. 9). These microorganisms produce
isoprenoids in a non-mevalonate pathway,
the DXR enzyme of which is inhibited by
fosmidomycin or FR-900098 (natural an-
tibiotics). Structural investigations (X-ray,
NMR[23]) of the complexes of DXR with
fosmidomycin, a 2-valent cation, and
NADPH have shown that the antibiotic is
totally embedded by the enzyme, i.e. it has
to be released from a CPP in order to be
active. We have recently shown that a salt
formed from an octaarginine and fosmi-
domycin (1:4) is highly active against the
malaria parasite in vitro (Fig. 9d), and that
even a covalently attachedOA conjugate of
FR-900098 phosphonate diester (≥5µM) is
able to inhibitM.bovisgrowth (Fig. 9e).[22b]
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In the latter case the phosphonate ester
and the O-acyl bonds must be hydrolyzed
before binding to DXR can occur. For in
vivo investigations l-OA-derivatives are
unsuitable because they are quickly de-
graded, d- and β-OAs are possibly too
stable; modulation of enzymatic stability
and other properties of OAs is, however,
possible with mixed l/d-OAs.[24] In these
recent studies we have totally moved away
from β-amino acids and β-peptides!

Besides OAs, we also studied l-, d-,
β2-, and β3-oligoprolines (OPs) as cell-
penetrating and phospholipid bilayer
passing peptides.[25] They enter HFF cells
much more slowly (12 h/37 °C) than the
AOs and, being lipophilic, use endocytotic
pathways. For measurement of the struc-
ture-dependent bilayer membrane translo-
cation of the OPs we used the nanoFAST
chip technology, by which the rate of per-
meation (molecules/(s · µm2)) can be deter-
mined simultaneously for hundreds of cav-
ities. Whether oligoprolines can be used to
carry cargoes other than fluorescent labels
into cells remains to be determined.

The use of single β-amino-acid resi-
dues for protection of peptides against
exopeptidases was demonstrated with the
C-terminal, fully active neurotensin seg-
ment NTS(8-13). The neurotensin GPC
receptor family NT1-3 is present in the
brain and in the digestive system, and NTS
modulates numerous processes related to
dopamine neurotransmission, analgesia,
inhibition of food intake, growth of cancer
cells etc.[26] For diagnostic and therapeutic
applications the peptidolytic stability of
NTS and other physiologically active pep-
tides has to be increased with as little loss
of activity as possible. The degradation by
exo-peptidases is commonly inhibited by
various structural modifications (Fig. 10a),
which cause serious changes of the chemi-
cal properties and structures.[27] In contrast,
terminal homologation leaves the entire
peptide chain from theN- to theC-terminal
stereocenter unscathed and preserves the
terminal NH

3
+ and CO

2
– charges, which are

just shifted by one C,C-bond distance. In
the case of NTS(8-13) the plasma stability
increases from minutes to many hours and
days after single and double terminal ho-
mologation (Fig. 10b), with almost com-
plete retention of receptor affinity.[27,28]

Finally, we have discovered a unique
type of enzyme, as a result of concern of
youngsters in the group, asking whether
β-peptides would ever disappear when
put into a natural environment. Samples
were collected from flowerpots, forests,
fields, compost heaps and water-treat-
ment plants. It took a year until we found
a sample (from the sewerage plant of
Leutschenbach, a suburb of Zurich), which
showed very slow growth of a colony of
microbes on the β-tripeptide +H

2
-β3hVal-

β3hAla-β2hLeu-O– as the single carbon
and energy source. Only one of the organ-
isms in the colony (Sphingosinicella xeno-
peptidilytica sp. 3-2W4) was actually able
to cleave the β-peptide, releasing products
of degradation for the others to survive in
a symbiosis (Fig. 11a).[10b,29a] To make a
12-year-long story short: the β-peptide-
cleaving enzyme (BapA) was isolated, its
encoding gene cloned in E. coli to prepare
larger quantities, its activity tested with a
variety of substrates, and its X-ray crystal
structure determined[29b] (Fig. 11). The

results are published in ca. 20 papers.[29c]
The β-peptidyl aminopeptidase BapA be-
longs to the well-known group of so-called
N-terminal nucleophile (Ntn) hydrolases,
only five of which have now been identi-
fied as β-amino-peptidases. Our BapA en-
zyme has the peculiar property of accept-
ing all N-terminal β-amino-acid residues
(small, large, non-polar, polar, except for
β-Asp and β-Glu), with a large pocket for
the side chains in the active site, as if it
were constructed for non-selective degra-
dation of β-peptides (which have not been
detected in nature!). BapA stops cleaving
when it arrives at an α-amino-acid resi-
due in a mixed β/α-peptide, opposite to
all ‘normal’ amino peptidases, which stop
with the first β-amino-acid residue in an
α/β-peptide.[30]

5. Back to Organic Synthesis

With the BapA enzyme available on
larger scale we have tested it for synthetic
purposes: BapA is capable of coupling a
β-amino acid to anα-amino acid, it cleaves
(S)-β2hPhe-OH from a rac-β-peptide,[29c]
and it can be used for preparative kinetic
resolutions, for instance of rac-β-amino-
acid amides to give the enantiopure (S)-
acid and (R)-amide (Fig. 11d).[29c,31] Thus
our journey has taken us far into biological,
pharmacological and biomedical research
areas and back to – enzymatic – organic
synthesis.

6. Conclusion

The story I have told herein is a dem-
onstration of the statement about curiosity-
driven research: “One can certainly plan
research, but not the result”.[32] For me and
my collaborators this trip was a lot of fun
and a constant process of learning about
the miraculous chemistry of life.
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