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The Search for Relay Stations. Long-
distance Electron Transfer in Peptides
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Abstract: Nature uses peptide aggregates as soft materials for electron transfer over long distances. These
reactions occur in a multistep hopping reaction with various functional groups as relay stations that are located
in the side chain and in the backbone of the peptides.
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1. Introduction

Peptides play various roles in living or-
ganisms. One of their tasks is the transport
of electrons over long distances.[1] They
connect electron donors and electron ac-
ceptors with each other, and mediate re-
dox reactions between them. In past years
it became obvious that bacterial pili, ag-
gregates that are built up by non-covalent
interactions of large peptides, are excellent
materials for electron transfer (ET) over
long distances (µm and more).[2] During
‘mineral respiration’ these pili connect the
inner cell membrane with minerals or met-
al ions that are situated outside of the cell.
In this way, extracellular metal ions drive
metabolic processes within the cell. In
some cases these pili do not contain cofac-
tors, which could act as intermediate redox
stations, so that only the amino acids of the
peptides transport the electrons over µm
distances. According to the Marcus theory
the influence of the distance ∆r on ET rates
k
ET
is described by Eqn. (1), where k

0
is the

rate at contact distance between donor and
acceptor and β is a material parameter.[3]

k
ET
= k

0
· exp(–β∆r) (1)

Itwas shown that single stepET through
peptides over more than 2 nm is too slow
for biological systems.[4] Therefore ET

over µm distances has to follow a differ-
ent mechanism. We have developed an as-
say that allows studies on ET in peptides,
and it became obvious that long-distance
ET through peptides are multistep hop-
ping reactions.[5] This is reminiscent of ET
through DNA, where two base pairs of the
nucleic acids act as stepping stones for a
multistep hopping reaction.[6] Instead of
one long and therefore very slowET, the re-
action occurs in several short and therefore
very fast ET steps. The overall reaction can
be described as diffusion of the charge be-
tween stepping stones. Compared to DNA,
which has only two different base pairs as
stepping stones, peptides offer more relay
stations for multistep ET processes. This
variety of relay stations in peptides and
proteins is very important as, in most cas-
es, the peptide backbone and the ET path-
way point in different directions. In these
situations ET follows the peptide backbone
only over short distances (secondary struc-
ture plays a role), and hopping occurs be-
tween relay stations situated at very differ-
ent sites of the peptide (primary structure).
Thus electrons take a shortcut, they hop
through the tertiary structure using several

relay stations, which are located between
the electron donor and the electron accep-
tor. In addition, peptides form aggregates
(quaternary structure) so that ET hopping
also occurs between relay stations of dif-
ferent peptides. This situation contrasts
dramatically with ET in DNA where the
relay stations (stepping stones) are lined up
like pearls on a string, and aggregation be-
tween DNA double strands does not occur
(charges!). Thus, the DNA backbone and
ET point in the same direction.

2. Amino Acids Side Chains

2.1 Relay Amino Acids
In order to answer the question, which

amino acid acts as a relay station for ET
in peptides, we have developed an assay
which contains the radical cation 1 of di-
alkoxylphenylalanine as electron acceptor,
tyrosine as the electron donor, and prolines
as spacers that mediate ET from the donor
to the acceptor.[5] The electron acceptor is
generated by a laser flash of a precursor,
which yields the aromatic radical cation
(2→5, Scheme 1).[7]
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transferred from the peptide radical cation
14 to trimethoxyphenylalanine (8). The
equilibrium constant is 0.25 (Scheme 3)
and therefore 6 times smaller than the equi-
librium constant of 1.5 (Scheme 2) using
the amino acid radical cation 9 instead of
the peptide 14.

The rates of irreversible trapping ex-
periments with tyrosine also point to a
stabilizing effect of the positive charge in
peptide 14.[15]The radical cation of peptide
14 reacts two times slower with tyrosine
(k = 2.3 × 108 s–1) than the radical cation
of amino acid 9 (k = 4.6 × 108 s–1). This is
analogous to thermodynamic and kinetic
effects of radical cations in DNA, where
a guanine radical cation is stabilized by an
adjacent guanine by a factor of 8, and their
formation rate is increased by a factor of
two.[16]

3. Peptide Backbone

ET processes through peptides and pro-
teins are influenced dramatically by their
secondary structure. A pronounced effect
is exerted by α- and 3

10
-helices where the

carbonyl groups point from the N-terminal
to the C-terminal end of the peptide, thus
they display dipole moments that increase
with the lengths of the helices. A conse-
quence of these large dipole moments is
that the reduction potentials of the amide
groups at the C-terminal ends might de-
crease to such an extent that these amide
groups could become relay stations in ET
processes.[17]We have measured this effect
in peptide 16, where a fast decrease of the
aromatic radical cation (electron acceptor)
can be explained with an oxidation of the
C-terminal amide group (Scheme 4).[18]

Radical cation 1 has an oxidation po-
tential of 1.3V vs.NHE so that the electron
acceptor cannot oxidize the proline spac-
ers, which therefore act as a medium and
not as stepping stone of the ET process. In
between the donor and the acceptor of 1we
incorporated an amino acid with the side
chain X. If this amino acid is a relay station
of the ET reaction, the rate will be speeded
up, because a slow one-step ET (super-
exchange reaction) over long distances is
switched to two fast ET steps (hopping re-
action) over shorter distances. In the first
reaction step side chain X acts as electron
donor and is oxidized to its radical cation.
In the subsequent step this radical cation
acts as electron acceptor so that ET con-
tinues. In some cases the radical cation of
the side chain X was observed. We have
carried out laser experiments with this as-
say and discovered that not only the aro-
matic amino acids tyrosine, tryptophan and
histidine[5a] but also the sulfur-containing
amino acids cysteine, cystine and methio-
nine are stepping stones for a hopping re-
action (Fig. 1).[5c,8]These amino acids have
been named by us as relay amino acids.

Amino acids with N–H, O–H or S–H
bonds become acids during oxidation to
their radical cations. If they lose a proton
their oxidation potentials decrease, which
makes the oxidation of these amino acids
easier (proton coupled ET) but it slows
down or even stops the next ET step. We
have observed a similar situation in elec-
tron hole processes through DNA, but in
double-stranded DNA the proton remains
H-bridged in the base-paired biopolymer.[9]
Trapping of the proton within peptides is
also possible if appropriate H-acceptors
are situated nearby.

2.2 Neighbor Group Effects
Surprisingly also methionine is a relay

amino acid, although the oxidation poten-
tial of a simple dialkylthioether is higher
than 1.3 V. It turned out that the neighbor-
ing amide group stabilizes the radical cat-
ion (Fig. 1, 6→7).[8,10]A phenyl group can
also stabilize a methionine radical cation
by a neighbor group effect.[11] Our experi-
ments with alkoxyphenylalanines indicate
that in peptides also an aryl radical cation
can be stabilized.[12]As test amino acids we
used dimethoxy- and trimethoxyphenylal-
anine derivatives 11 and 8, respectively: a)
their oxidation potentials differ by 10 mV
in favor of the trimethoxyphenylalanine,
and b) their radical cations can be eas-
ily detected by UV-vis spectroscopy.[5a,b]
Starting with a 1:1 mixture of the amino
acid derivatives 8 and 11, and generating
small amounts of the radical cation 9 by
a laser flash,[13] led to an equilibrium of
the aromatic radical cations 9:10 = 40:60
(Scheme 2).[14] This is in accord with the
small difference of the redox potentials of
the amino acids favoring the trimethoxy-
phenylalanine radical cation.

If the two methoxyphenylalanines
are part of the same peptide, separated
by one proline, the equilibrium between
the radical cations is 12:13 = 65:35, that
is in favor of the dimethoxyphenyl side
chain (Scheme 2). Obviously, the aromat-
ic radical cations in this peptide interact
with the peptide. We have quantified this
interaction in equilibration experiments
with trimethoyxyphenylalanine (8). From
equimolar amounts of peptide 15 and
amino acid 8 we generated in a laser flash
small amounts of the radical cations and
measured an equilibrium of 14:10 = 80:20
(Scheme 3).[14] Only 20% of the charge is
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Fig. 1. Amino acids that function as relay
amino acids.
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mers’. The dense packing in peptide ag-
gregates can bring hopping stations close
to each other and increase the importance
of neighbor group effects. Latest publica-
tions on the structure of ‘monomers’ and
‘polymers’ used in mineral respiration are
in accord with these conclusions.[2b,20]
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Subsequent hopping of the charge using
other amide groups (relay stations) of the
peptide leads to a fast generation of the ty-
rosyl radical (oxidation of the electron do-
nor). We conclude that in peptides of these
secondary structures the backbone is not
only a spacer between donor and acceptor
as their amide groups might become step-
ping stones of a hopping process. These
stepping stones speed up ET processes
within and between peptides.

4. Charges

A further feature of peptides and
proteins is that they can control ET pro-
cesses using charged amino acids. We
have measured this effect introducing a
positive charge into peptide 18 by depro-
tection of its N-terminal end (18→19).[19]
In peptide 19 two positive charges are in
short distance to each other, which leads
to Coulomb repulsion and increases the
oxidation potential. As a consequence the
ET reaction, which neutralizes the charge
at the N-terminal side chain, is increased
by one order of magnitude (Fig. 2). In a
similar way the dipole moments of pep-

tides influence ET rates even if they do not
change the mechanism from a one-step
(superexchange) to a multistep (hopping)
mechanism.[19]

5. Prospects

Our laser experiments have demon-
strated that peptides can control ET rates
by their side chains (primary structure) and
conformations (secondary structure), as
well as neighbor group effects and charges.
These interactions make a direct electron
migration through the tertiary structure of
a large protein possible. The electron hops
from the electron donor to the electron ac-
ceptor using different peptide sequences of
the large protein.

Nature utilizes peptides for long-dis-
tance ET processes not only as single mol-
ecules but also as soft materials in which
the peptides have been self-assembled and
formed ‘polymers’ (quaternary structure).
The influence of peptide structures on ET
rates that we have described above holds
not only for intramolecular ET within one
peptide molecule but also for intermolecu-
lar processes between the peptide ‘mono-
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