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Abstract: Computer algorithms help in the identification and optimization of peptides with desired structure
and function. We provide an overview of the current focus of our research group in this field, highlighting
innovative methods for peptide representation and de novo peptide generation. Our evolutionary molecular
design cycle contains structure–activity relationship modeling by machine-learning methods, virtual peptide
generation, activity prediction, peptide syntheses, as well as biophysical and biochemical activity determination.
Such interplay between computer-assisted peptide generation and scoring with real laboratory experiments
enables rapid feedback throughout the design cycle so that adaptive optimization can take place. Selected
practical applications are reviewed including the design of new immunomodulatory MHC-I binding peptides and
antimicrobial peptides.
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1. Introduction

Peptides are currently experiencing a
renaissance as tool compounds and lead
structures in pharmaceutical research and
chemical biology,[1] specifically through
combinations of computational, chemical,
and biological approaches.[2,3] From the
20 standard amino acids one can construct
20x possible sequences of length x. While
solid-phase synthesis and in vitro activity
testing allow several thousand peptides to
be analyzed at a time, exhaustive peptide
libraries become prohibitively impractica-
ble with growing peptide length. Access
to up to approximately 1015 sequences can
be achieved by phage display methods.[4,5]
This elegant experimental approach has
been shown to be applicable in a broad
variety of studies and deliver peptides
with desired properties, but it also suffers
from limitations. For example, very hy-
drophobic and aggregating sequences, as
well as peptides that are lethal to the host
bacteria used for phage production will
not be found by phage display. Computer-
assisted de novo peptide design offers a
possibility to avoid such pitfalls and work

with peptides that are otherwise difficult to
handle. It also offers an alternative when
time and resources are limited. When a
design hypothesis is available, e.g. a struc-
ture–activity relationship model, pharma-
cophore model or receptor structure, then
computer-based peptide generationmay be
employed to efficiently find solutions for
combinatorial amino acid sequence opti-
mization. This methodology is grounded
on a predictive model of peptide activity
(the objective or ‘fitness’ function), and a
robust optimization method for virtually
moving in peptide sequence space towards
regions of high fitness (Fig. 1a).[6]Here, we
present an overview of the peptide design
concepts that have been developed in our
group, highlighting computational algo-
rithms and selected practical applications
focusing on immunomodulatory (major
histocompatibility protein I, MHC-I lig-
ands) and antimicrobial peptide (AMP)
design.

2. Peptide Evolution in silico

The general idea of computational
peptide design is to use search algorithms
to select a subset of peptides with pre-
dicted desirable properties from the pool
of all peptides (sequence space) with a
given length N. The number of all theo-
retically possible subsets p of size k is N!/
(k!(N–k)). Evidently, it is impossible to
perform exhaustive computational subset
sampling even for small peptide pools.
Without any prior knowledge about the
structure of the macromolecular target,
potential structure–activity relationships
or known reference peptides that could
be used as design templates, one is lim-
ited to performing some kind of random
guessing. De novo design can sometimes
provide a solution, so that new actives are
found with limited effort, and unnecessary
synthesize-and-test cycles are avoided. A
key component is to perform an adaptive
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Fig. 1. a) Peptide design cycle consisting of computational model build-
ing and sequence assembly, and practical peptide synthesis and test-
ing. Iterating through the cycle allows for swift peptide optimization. b)
Typical course of a peptide optimization process. After a phase of broad
sequence sampling (exploration phase) the process converges toward a
local optimum (adapted from ref. [7]).
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tion of the signal peptide.[17] To the best
of our current understanding, there is no
globally applicable concept of molecular
similarity.[18,19] Lacking better knowledge,
molecular similarity could thus be consid-
ered as a context-dependent property.[20,21]
We typically employ two types of peptide
representations as basis for computational
model building:

local search for candidate sequences, i.e.
progress through stages of exploration and
exploitation. Typically, such an adaptive
search first examines a broad variety of
different peptide sequences before homing
in on local optima in the fitness landscape
(Fig. 1b). Nature-inspired algorithms have
repeatedly been shown to excel in this re-
gard and provide practical − though not
necessarily optimal − solutions to the task
of peptide design.[8]

2.1 Peptide Representation and
Activity Prediction

According to Rechenberg,[9] strong
causality between the objects that are sub-
ject to design and their fitness (function,
property, activity) is required for any sys-
tematic technical optimization. This notion
was independently rephrased in the con-
text of quantitative structure–activity re-
lationships (QSAR) and molecular design
as the Chemical Similarity Principle.[10]
Without some kind of function-related
order of the molecular building blocks
that are used for compound construction,
one would perform a ‘random’ search for
optimal products. In other words, a con-
text-sensitive molecular representation is
needed so that small structural variations
between molecular building blocks result
in only small changes of the predicted and
the measured activity or property. As an il-
lustration of this fundamental concept, we
have computed a ‘similarity wheel’ for the
20 most common proteinogenic amino ac-
ids from their physicochemical properties
(Fig. 2). We represented each residue by
19 principal component scores (PPCA de-
scriptor),[11] which we obtained by princi-
pal component analysis[12]of 544 amino ac-
id properties (AAindex database v9.1).[13]
Using these 19-dimensional vector rep-
resentations of the 20 amino acids, we
generated a self-organizing map (SOM)[14]
consisting of 20 ‘neurons’ (data clusters)
arranged as a ring. The SOM algorithm
performs a topology-conserving data pro-
jection so that high-dimensional data can
be visually inspected. In our example, the
relative similarity of the 20 amino acids in
terms of their characteristic physicochem-
ical features is mirrored in their relative
ordering on the ring formed by the SOM.
Neighboring residues are most similar to
each other, while opposing residues are
most dissimilar in terms of physicochem-
ical properties. The ordering of amino ac-
ids shown in Fig. 2 is comparable to the
original residue grouping proposed by
Taylor,[15] and related reduced alphabets
that were shown to bear biological sig-
nificance in sequence alignments.[16] It
is important to realize that such a gener-
al grouping does not automatically result
in strong causality in every biological or
chemical context. Depending on the spe-

cific system under investigation, two res-
idues may be swapped with or without
having an effect on molecular function. A
prominent example is given by the posi-
tively ionizable amino acids arginine and
lysine, which are neighbors on the similar-
ity wheel. In the context of protein target-
ing signals, however, one may not always
substitute lysine by arginine without influ-
encing the targeting capability and func-
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self-organizing map
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standard amino acids.
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Fig. 3. Peptide representation by property cross-correlation (a), and hy-
drophobic moment (b). In a) a peptide sequence is shown as a string of
beads. By computationally moving from the N- to the C-terminus (indi-
cated by blue arrows), property x at residue position i is put into context
with its neighboring residues up to a predefined correlation distance
(here D = 3). In b) the computed hydrophobic moment vector μH (green)
is shown for the helical peptide SLLSLIRKLIA featuring a partially amphi-
philic distribution of residue hydrophobicity (gray to red shading indicates
increasing hydrophobicity). The global hydrophobic moment vector
results from summing up the individual contributions by the residue side-
chains (dashed lines).
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Swarm Algorithms,[35,36] and Genetic
Programming[37] for their ability to find
novel peptides with desired properties
from scratch.[38] According to Koza[37]
artificial adaptive systems require several
essential elements, specifically
– Structures that undergo adaptation,
– Initial structures (starting solutions),
– Fitness measure that evaluates the struc-
tures,

– Operations to modify the structures,
– State (memory) of the system at each
stage,

– Method for designating a result,
– Method for terminating the process, and
– Parameters that control the process.

The most relevant aspect of adap-
tive peptide optimization is the so-called
‘memory’ because by keeping track of
the past progress during an optimization
process and learning from previous expe-
rience helps the computer algorithm make
informed decisions for the next step(s) of
the search. In other words, memory turns
a blind or random search into rational mo-
lecular design. There are many ways to
implement memory in a peptide design
program, for example in terms of peptide
library diversity. This idea has been exem-
plary realized in the Evolution Strategy:
At the beginning of the search process, a
population of peptides is initialized with
random sequences. Each peptide is eval-
uated by the fitness function, where fitter
peptides will have a higher probability to
be selected as parents of the next gener-
ation and generate offspring (sequence
variations). Genetic operators like se-
quence mutation and crossover create
variations of winning peptides (parents).
Such a simulated evolutionary process
stops either after a fixed number of gen-
erations or when a given fitness threshold
is reached. Each new population consists
of variations of the fittest individuals of

i) Global properties (e.g. total hydro-
phobicity, charge, residue composition),
and

ii) Local properties (e.g. secondary
structure, position-specific properties, res-
idue bulkiness).

The hydrophobic moment µ
H
is an ex-

ample of a global conformation-sensitive
descriptor (Eqn. (1), Fig. 3a).[22]The length
of this vector is the signed numerical hy-
drophobicity associated with the type of
amino acid side chain, and its direction is
defined by the orientation of the amino ac-
id side chains.A large value of µ

H
indicates

that the peptide structure is amphiphilic
perpendicular to its main axis.[23] This mo-
lecular representation has been shown to
be relevant for peptide bioactivity mode-
ling, especially membrane–peptide inter-
action.[24,25]

(1)µH = sp ⋅Hp
p=1

R

∑

whereH
i
is the hydrophobicity value of the

residue at position p, and s
p
is a unit vector

pointing from the alpha carbon atom of the
pth residue to the center of the residue’s side
chain. Numerous variations of this concept
have been conceived over the years and
have also been used as a direct design prin-
ciple for amphiphilic peptide structures.

Fourier-transform and correlation-
based feature representation has been
shown to be particularly useful in captur-
ing periodic property patterns and locally
correlated residue positions.[26] The con-
cept of correlation-based feature extraction
is depicted in Fig. 3a.Amino acid sequenc-
es are computationally scanned using the
sliding-window technique, which places
each residue position in turn into a context
of the neighboring residues. The maximal
correlation distance is defined by the size
of the sliding window. For each peptide,
a so-called correlation vector is computed
(Eqn. (2)) that allows for straightforward
sequence analysis by, e.g. similarity as-
sessment via the Euclidian distance metric
(Eqn. (3)).

(2)cD = x i ⋅ x j( )
q=1

R

∑
p=1

R

∑

where D is the correlation distance under
consideration, R the number residues with-
in distance D, and x a real-valued amino
acid property. The autocorrelation term
x
i
x
j
may be modified to allow for different

properties to be considered (cross-correla-
tion).

(3)d A,B( ) = Ai −Bi( )
2

i=1

Dim

∑

where A and B are peptide descriptor vec-
tors of dimension Dim. Using d as a simi-
larity metric, peptides can be clustered and
ranked by pairwise comparison of their
descriptor vectors.

The ability for a computer program to
assess peptide similarity quantitatively is
the prerequisite for structure–activity mod-
els and activity prediction. Such fitness
functions guide fully automated peptide
design. As peptide–activity relationships
are usually nonlinear, the underlyingmath-
ematical model should be able to act as a
universal function approximator. Among
the many modeling approaches, various
types of artificial neural networks[11] and
kernel-based machine learning models[27]
like support vector machines and Gaussian
process models have become popular. We
often employ cascaded jury models that
consist of several classifiers or quantitative
predictor functions, each trainedwith a cer-
tain peptide representation (numerical de-
scriptor). These first-stage models are con-
nected to feed a second-stage model pro-
ducing the final score or fitness value (Fig.
4). Thisway, errorsmade by individual first
stage models are alleviated and the jury
prediction often turns out to bemore robust
with sustained prediction accuracy.[28,29]

2.2 Adaptive Optimization
The umbrella term adaptive optimiza-

tion stands for a whole class of computa-
tional optimization methods that contain
an element of dynamic program recom-
pilation or just-in-time parameter adjust-
ment.[30,31] We have investigated various
nature-inspired optimization algorithms
like the Evolution Strategy,[32] Genetic
Algorithms,[33] Ant Algorithms,[34] Particle
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Jury network
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…
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Fig. 4. Schematic of a
cascaded jury model
for peptide activity
prediction.
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the previous generation, so that over time
the process adapts to the underlying fit-
ness function and produces solutions to
the optimization problem. The adaptive
parameter is the diversity of the popu-
lation in terms of sequence variation.[39]
Fig. 5 presents an example of a virtual
evolution of the parent sequence CHIMIA
over one generation of offspring. By pursu-

ing this concept of adaptive library design
the number of synthesize-and-test cycles
can be kept minimal.[41]

3. Applications

3.1 Antimicrobial Peptides
One of our main projects is to study

peptide–membrane interaction. We distin-
guish between lipid membrane targeting,
transition/crossing, and disruption by pep-
tides.[3] Representatives for each class are
signal peptides, cell-penetrating peptides,
and antimicrobial peptides (AMPs). We
strive for a profound understanding of both
the mutual and the discriminative structur-
al features responsible for these delicately
tuned functions.[42]A first step towards the
rational design of peptides with the desired
membrane activity is to find a suitable mo-
lecular representation that allows for unsu-
pervised clustering into the respective ac-
tivity classes.[43] One such approach is the
SOM, which allows for visual inspection
of the distribution of peptides in sequence
space. Fig. 6a shows such a nonlinear map,
which we obtained forAMPs and bacterial
signal peptides. In Fig. 6b, another model
of the fitness landscape is presented, based
on the same data. Apparently, the descrip-
tor used (here: correlated physicochemical
properties) is meaningful for function-re-
lated sequence clustering. AMPs are clear-
ly separated from signal peptides. Once
such a map is available, one can use it
for peptide design by projecting novel se-
quences onto the map and picking the ones
located on favorable activity islands.[46]
The sequence RVKVATTLIWV

NH2
repre-

sents an example of a de novo generated
AMP peptide, which we identified using
the SOM approach, synthesized and test-
ed successfully. At a concentration of 100
µM this computationally found sequence
displayed strong lytic effects on large

unilamellar vesicles with a lipid compo-
sition that mimics bacterial membranes
(POPE:POPG = 7:3; not shown), and in-
hibited the growth of Escherichia coli (E.
coli) and Staphylococcus aureus (S. au-
reus) strains in vitro (Fig. 7).

3.2 MHC-I Binding Peptides
We trained a cascaded jury model on

the recognition of peptides that bind to
MHC-I allomorph H-2Kb, and employed
this prediction system as artificial fitness
landscape guiding the search for novel
H-2Kb ligands.[47] For sequence space ex-
ploration we relied on an ant colony opti-
mization algorithm, which we adapted to
work on peptides. The idea was to have ar-
tificial ants (search agents) construct new
peptide sequences (octamers) by following
a pheromone trail through sequence space.
The principle of pheromones was real-
ized by pseudo-probabilities for picking
up certain amino acid residues for chain
elongation (Fig. 8). Overall, the ant algo-
rithm turned out to be excellently suited
for combinatorial peptide assembly with
hit rates of up to 95% and sustained sta-
bilization potential of MHC-I molecules
on the surface of TAP-deficient RMA-S
cells. Systematic investigation of the min-
imal length of peptide ligands revealed a
length of five residues for the H-2Kb al-
lomorph, which we confirmed in a newly
established thermal denaturation assay.[29]
Computational analysis of viral proteomes
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CHIMIA by applying a Gaussian randomization
model. d is the Euclidian distance (Eqn. (3)) to
the seed peptide. Residues are mutated based
on physicochemical similarity. The series of
ten peptides shown on the left was generated
with low diversity (blue), the right series with
high diversity (red), i.e. wider spread around
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rameter that automatically adjusts to the local
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Fig. 7. Growth inhibition of E. coli and S. au-
reus over time by a de novo designed antimi-
crobial peptide. GFP-transformed bacteria (9 ×
106 cells) were incubated with 100 µM peptide,
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Fig. 6. Fitness landscape models. a) Self-organizing map (SOM) showing the distribution of
antimicrobial peptides (AMPs, ‘activity island’ in red) and bacterial signal peptides (blue). b)
Landscape of the same data shown in a), but projected by stochastic neighbor embedding.[44]We
used our LiSARD tool for visualization.[45] The model computes pseudo-probabilities of finding
an antimicrobial peptide (AMP) in sequence space. Apparently both landscape models capture
important features that distinguish membrane-disrupting AMPs from membrane-targeting signal
peptides. Amino acid sequences were encoded by cross-correlated physicochemical properties
using a sliding-window of seven residues (maximal correlation distance D = 3 residue positions).
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led to the identification of vesicular sto-
matitis virus derived peptides that induced
CD8+ T-cell proliferation after viral infec-
tion of mice.[48] These studies demonstrate
that advanced machine-learning models
in combination with adaptive peptide de-
sign algorithms provide a unique access to
rationally designed peptides with desired
properties and a promising approach to-
wards ‘reverse vaccinology’.[49]

4. Conclusions and Outlook

Computational peptide design that im-
plements the design cycle shown in Fig. 1a
has resulted in several new peptides that
exhibit the desired bioactivity. The key
question remains how to represent pep-
tides so that meaningful structure–activity
relationship models can be deduced from
the available data. We have mainly consid-
ered static peptide models and sequence
patterns as input to machine learning
models. However, peptide dynamics and
consequently representations that explicit-
ly take into account molecular flexibility,
conformational preferences, and environ-
ment-sensitive descriptors will likely be
needed to make a significant step forward
in our modeling capabilities. There is no
doubt that laboratory experiments are es-
sential to provide feedback and improve a
modeled fitness function. We expect that
a tight combination of computational and
practical experiments will lead to further

improvements. For example, fully auto-
mated robotic peptide synthesis coupled to
inline analytics and subsequent microflu-
idic assay systems might close the design
cycle so that computational predictions can
be realized and optimized without manual
intervention.
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Fig. 8. Principle of ant colony optimization of
amino acid sequences. The concept of op-
timal path finding by some ant species has
been adapted to finding optimal peptides in
sequence space. The artificial ant assembles
new peptides by collecting amino acid resi-
dues, staring at residue position 1 (N-terminus)
and proceeding through the sequence. The
selection is based on a probabilistic sampling
scheme that mimics pheromone trails. These
pseudo-probabilities are computed by the
fitness function employed. In the figure color
intensity corresponds to pheromone density.
The current peptide sequence is FDEG.


