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in Crystallography?
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Abstract: The discovery of quasicrystals had important consequences for our understanding of long-range order
in thermodynamic equilibrium, the definition of the term ‘crystal’ as well as diffraction theory. Quasicrystals have
been observed not only at the atomic scale in binary and ternary intermetallic systems, but also at the mesoscale
in self-assembled colloids and block-copolymers, and even at the macroscale in packings of hard polyhedra.
How important was the discovery of quasicrystals for crystallography? Did it usher in a scientific revolution and a
paradigm shift? These questions are discussed following a short overview of the status of quasicrystal research.
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Quasicrystals – A Paradigm Shift
in Crystallography?

“Though the world does not change with
a change of paradigm, the scientist after-
ward works in a different world.”[1, p. 121]

They neither changed the world nor did
they excite crystallographers all over the
globe. It was simply unbelievable, not only
for double Nobel laureate Linus Pauling,
but also for quite a few educated crystal-
lographers. Nowonder that it took a couple
of years until it was commonly accepted
that the equilibrium state of solid matter
does not necessarily have to be periodic,
not even on average. As a matter of fact,
under specific conditions crystals can be
quasiperiodic (Figs. 1, 2).

Shechtman, a mid-career materials sci-
entist at that time, tried for more than two
years to get his discovery, made in April
1982,publishedinapaperentitled‘Metallic
Phase with Long-Range Orientational
Order and No Translational Symmetry’.[2]
Shortly after, this phase, exhibiting icosa-
hedral diffraction symmetry, was named
‘quasicrystal’ (QC).[3] Shechtman was
struggling hard with the disbelief of emi-
nent scientists, who ‘knew’ that QCs could
not exist because this would infringe on
fundamental laws of crystallography.
Fortunately, Shechtman was hard-nosed
enough not to give up firmly believing in
his own experimental work.

“Almost always the men who achieve
these fundamental inventions of a new
paradigm have been either very young or

very new to the field whose paradigm they
change.”[1, p. 90]

Perhaps, the disbelievers would have
been convinced more rapidly had they
known of a visionary paper[4] by the fa-
mous British crystallographer Alan L.
Mackay, who was particularly interested
in ‘generalized crystallography’. This
article was published in August 1982,
showing an optical diffraction pattern of a
Penrose tiling (Fig. 3, outlined in green).
The similarity with Shechtman’s tenfold
symmetric diffraction pattern[2] is obvious.
Mackay introduced the term ‘quasi-lattice’
and suggested two-dimensional (2D) and
three-dimensional (3D) structure models.

Why have crystallographers more or
less ignored this challenging field of QCs?
Even the Nobel Prize for Chemistry 2011,
awarded to Dan Shechtman for his dis-
covery, brought QCs to the attention of
the crystallographic community only for
a short time. Why have hard-core crystal-
lographers never taken up the challenge to
develop a new toolbox for higher-dimen-
sional crystallography and to solve the
strange structures of QCs? Why was this
opportunity to extend the crystallographic
approach to quasicrystals mostly left to a
comparably small community of interested
physicists, mathematicians and materials
scientists?

It seems that most crystallographers
have never recognized QCs as ‘true crys-
tals’ that are worthwhile of being studied,
perhaps, because in the first years, QCs
could only be prepared by rapid solidifi-
cation. An analogous observation holds
for amorphous metals, for instance. They
too were and are studied by a community
essentially outside of crystallography. In
contrast, C

60
with its icosahedral symmetry

and fullerenes in general were adopted by
crystallographers immediately after their

discovery, possibly because their periodic
crystal structures, which could be analyzed
by well-established methods, made them
‘trustworthy crystals’. The crystallograph-
ic community has also been less reluctant
to deal with the other classes of aperiodic
crystals, namely the incommensurately
modulated structures and the composite
(host/guest) structures. Perhaps, because
in contrast to QCs, these aperiodic crystals
can still be described based on periodic ba-
sic structures and still fit in the framework
of classical crystallography.

Before discussing the question whether
or not the discovery of QCs ushered in a
paradigm shift in crystallography, whether
it was a revolutionary rather than an evo-
lutionary discovery, we will give a short
review of the actual status of QC research.

“The transition from a paradigm in crisis
to a new one from which a new tradition
of normal science can emerge is far from
a cumulative process, one achieved by
an articulation or extension of the old

Fig. 1. X-ray diffraction pattern with penta-
grammal (and decagrammal) symmetry.
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Quasiperiodic structures are nowadays
known at different length scales: at the
atomic scale in intermetallic phases, at the
mesoscale in self-assembled colloids and
block-copolymers, and at the macroscale
for packings of particular classes of poly-
hedra (for overviews see, for instance, refs
[5–7]). While in the first case decagonal
or icosahedral symmetry is predominant,
in the other two cases it is the dodecago-
nal symmetry. It has been shown by model
calculations that all these different kinds
of quasiperiodic long-range order are sta-
bilized by particular interaction potentials
favoring two different length scales.[8] The
ratio of the two basic lengths (‘atomic’ dis-
tances) essentially determines the resulting
symmetry. Recently, dodecagonal quasipe-
riodic order has also been found in a thin
BaTiO

3
film grown on a Pt(111) surface.[9]

This observation may open up the way
for growing heteroepitaxially quasiperi-
odic thin films of a large class of ionically
bonded materials such as multiferroics, for
instance.

In the case of intermetallic QCs, elec-
tronic stabilization according to the Hume-
Rothery mechanism (Fermi surface/
Brillouin zone nesting) plays an important
role, perhaps even a decisive one. Indeed,
many QCs have been discovered based on
particular values for the valence electron
concentration.[10] It is not fully understood
yet, whether or not an entropic contribu-
tion to their stability is necessary, e.g. a
minimum amount of phasonic or other
kind of disorder. The assumption of an en-
tropic contribution is favored, however, by
indications that QCs are high-temperature
phases and do not represent groundstates
at zero Kelvin. An important geometric
factor favoring the formation of quasipe-
riodic order is the optimization of the
packing of clusters, whose structures can
be described as projection of higher-di-
mensional polytopes.[11] The term ‘cluster’
should be understood here as synonymous
for ‘recurrent structural building unit’, the
chemical bonding between atoms within
such a cluster and between atoms belong-
ing to different clusters is of the same
kind.[12,13]

Thermodynamically stable intermetal-
lic QCs seem to be quite abundant (Fig. 2).
They can be grown like ‘normal’ crystals
and can have a high degree of perfection
comparable to that of the very best interme-
tallic compounds. QCs of a size needed for
X-ray structure analysis can be easily ob-
tained, and in some cases even centimeter-
size QCs have been grown. Consequently,
much has been learned about the structures
of QCs from both single crystal X-ray dif-
fraction as well as from electron micros-
copy, although the information is always
averaged in one way or another.[14] The
main problem with QC structure analysis

paradigm. Rather it is a reconstruction
of the field from new fundamentals, a
reconstruction that changes some of the
field’s most elementary theoretical gener-
alizations as well as many of its paradigm
methods and applications. During the
transition period there will be a large but

never complete overlap between the prob-
lems that can be solved by the old and by
the new paradigm. But there will also be
a decisive difference in the modes of solu-
tion. When the transition is complete, the
profession will have changed its view of
the field, its methods, and its goals.”[1, p. 85]

Fig. 3. Electron den-
sity map projected
along the tenfold
axis of decagonal
Al-Co-Ni. Gummelt
decagons are shaded
yellow with the blue
parts marking po-
tentially overlapping
areas (overlapping
rules). If the overlap-
ping rules are obeyed
everywhere in the
structure then the
underlying tiling is
strictly quasiperiodic.
A patch of a classical
Penrose tiling built
from two rhombs
of different shapes
is outlined in green,
quasilattice planes
in red.
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Fig. 2. Concentration diagrams of decagonal and icosahedral QCs. The stability fields are shaded
grey. In the center figure, the onion-like shell structure of a typical endohedral QC cluster is illus-
trated.
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based on periodic lattices allow a rich
phonon spectrum, Bloch waves and a dis-
crete autocorrelation function, because of
the finite number of different atomic dis-
tances in a given range everywhere in an
infinite structure. Even QCs, at least those
which have been experimentally observed
so far, exhibit a kind of discrete periodic
average structures (PAS)[24,25] on sublat-
tices related to strong Fourier coefficients.
Consequently, Bloch waves and phonons
in QCs may be supported by the differ-
ent PAS present in each QC. Of course,
real crystals are never strictly periodic, be-
cause of their finite size, thermal vibrations
(phonons), thermal vacancies (equilib-
rium defects), impurities (point defects),
etc. Nevertheless, periodicity is a fruitful
concept to understand many properties of
crystals and QCs.

Periodicity reduces the complexity in
the description of an infinite crystal struc-
ture drastically, at least if compared to the
complexity of amorphous structures. It is
sufficient to know the atoms in the asym-
metric unit, the space group symmetry and
the Bravais lattice. How does this compare
with QCs? Are periodic crystals less com-
plex than quasiperiodic ones, which do not
even have a unit cell?

An answer to these questions requires
a measure of structural complexity. I will
illustrate this with the simple example of
the 1D quasiperiodic Fibonacci sequence
(FS) and some of its approximants. Each
of the three structures in Fig. 4 is fully de-
fined by giving a 2D lattice, a strip with
a particular slope and a width defined by
one 2D unit cell that just fits into the strip.
1D ‘crystals’ are generated by projecting
all lattice points within the strips onto the
red lines (‘physical space’). Whether the

is that both the structure of the clusters
themselves and the long-range order of
the clusters have to be determined. In con-
trast, for periodic crystals, only the content
of one unit cell has to be determined, the
identification of the lattice is straightfor-
ward. In the case of QCs both the atomic
arrangement inside the clusters as well as
the arrangement of clusters can be disor-
dered, while we do not need to consider the
latter in the case of periodic crystals.

Mesoscopic quasiperiodic structures
are simpler to study experimentally and
their formation and growth are easier to
understand and model. There are no elec-
tronic contributions to consider, and only
rather simple ‘atomic’ interactions have to
be taken into account. In the case of the
self-assembly of micelles in a liquid, for
instance, the two necessary length scales
are provided by a soft repulsive interaction
between the coronas of the micelles and a
hard repulsion between their cores.[15–17]
Mesoscopic quasiperiodic structures can
be modeled successfully even with a sim-
ple step-function potential.

A similar mechanism governs the
packing of hard tetrahedra, for instance.
They order in an arrangement with overall
dodecagonal (diffraction) symmetry. Here,
the two length scales are provided by the
geometry of the polyhedra and the ways
they can be arranged (face to face or edge
on edge etc.); the resulting quasiperiodic
arrangement is solely of entropic origin.[18]
This implies that the structure (underlying
tiling) is not strictly quasiperiodic, but just
on average (random tiling).

Mesoscopic QCs, be they self-assem-
bled or top down manufactured, are of
particular interest for applications such
as photonic or phononic crystals.[19] Their
high symmetry allows for highly isotropic
band gaps as well as very versatile defect
generation and band-gap engineering.

Quantitative QC structure analysis has
been very successful thanks to the power
of higher-dimensional (nD) crystallog-
raphy. Carl Hermann[20] paved the way
for nD crystallography already in 1949.
He was interested in the question which
rotational symmetries were compatible
with lattices in n dimensions. For 5-, 8-,
10- and 12-fold axial QCs 4D lattices are
needed, and for icosahedral QCs (IQC) 6D
lattices, for instance. Powerful computer
programs are now available for nD struc-
ture solution based on the charge-flipping
and/or low-density-elimination approach
(SUPERFLIP[21]) and for nD structure re-
finement (QUASI07_08[22]).

Aspects of QC that are less well under-
stood include their formation and growth
and the factors favoring quasiperiodic
long-range order (for an introduction into
this problem, see, for instance, ref. [23]
and references therein). A valuable help

for the analysis of the latter problem is
the existence of approximants to QCs.
Approximants are periodic structures built
from the same clusters as QCs; their stabil-
ity regions in phase diagrams are close to
those of the related QCs. They are called
rational if their structures can be generated
using the nD approach (for an introduction
see, for instance, ref. [6]). There is only a
small difference between the stoichiom-
etries of QCs and their approximants, if
both exist in the same binary or ternary
intermetallic system. Consequently, the
chemical potential is the most important
factor for stabilizing one or the other of the
two structures. In some cases, the slightly
different electron concentrations resulting
from the different chemical compositions
may also be important.

One way to describe the structure of
QCs is based on the packing of partially
overlapping endohedral clusters, which are
decaprismatic columnar in the case of de-
cagonal QCs (DQC, see Fig. 3) and of tria-
contahedral shape in the case of IQCs. The
cluster centers decorate the vertices and
other special sites of tilings, which show
close relationships to 2D and 3D Penrose
tilings, respectively.

Discussing quasiperiodicity also
means discussing the difference to period-
icity and asking why periodicity is such a
strong ordering principle that it applies to
almost all materials which are crystalliz-
able, from rock salt to viruses. Periodicity
is the result of maximizing the packing-
density of structural subunits (atomic envi-
ronment types, AETs) under the constraint
of minimizing the Gibbs free energy. This
leads to a narrow distribution of atomic
(molecular) distances and a minimum of
different AETs. Furthermore, structures
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Fig. 4. The Fibonacci sequence (FS), consisting of short (S) and long (L) line segments, and two of
its rational approximants in the 2D description. In the strip-projection method, all vertices of the
2D lattice inside the strip are projected onto a line (physical space) parallel to the strip boundary.
Depending on the slope of the strip either the quasiperiodic FS or rational approximants are ob-
tained. Note the different stoichiometries of the approximants LS and L2S and the FS LτS where τ
is the golden ratio (1 + √5)/2 = 1.618.
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periodic approximant structures LS and
L

2
S are generated or the quasiperiodic FS

LτS depends only on the slope of the strip,
which is defined by the overall stoichiom-
etry L

x
S (τ is the golden ratio (1 + √5)/2

= 1.618). This implies that the algorithmic
(Kolmogorow) complexity, i.e. the length
of the algorithms for generating each of the
three structures is exactly the same for the
quasiperiodic as for the simplest periodic
approximant structure (see ref. [26] and
references therein). The situation changes
if a structure with exactly the same number
of sites per unit cell cannot be generated by
the 2D-to-1D projection approach, or more
generally an nD to mD projection (n > m).

In contrast, the algorithmic entropy,
which reflects the degree of randomness,
can be larger in quasiperiodic than in pe-
riodic crystals. A structure, which is based
on a tiling (quasilattice) of at least two dif-
ferent unit tiles, can show any kind of or-
der of the unit tiles from full randomness
to strict quasiperiodicity. In addition, the
decoration (atomic arrangement) of the
unit tiles may be disordered. In contrast
periodic tilings (lattices) cannot show any
disorder in the distribution of the unit cells,
only in their decoration.

Now to the question, how doQCs grow,
how doesMother Nature generate quasipe-
riodic order without knowing about the
nD-approach? The natural algorithm for
QC-growth cannot be fundamentally dif-
ferent from that for periodic crystals; the
same rules must apply as for complex in-
termetallics. Varying the chemical compo-
sition of an intermetallic phase in a particu-
lar binary or ternary system by a few per-
cent can change its structure from periodic
to quasiperiodic, from an approximant to
a QC. Thus the driving force must be the
chemical potential, provided that the con-
stituting elements have the size ratios and
valence electron concentrations needed for
the constituting clusters. In terms of atomic
interactions, potentials favoring two length
scales in a proper ratio have been proven to
be essential for the formation of the fun-
damental clusters and their assembly to
quasiperiodic structures. Both periodic and
quasiperiodic structures result as a com-
promise between the energetically best
possible local atomic arrangement (AET,
cluster) and the global densest packing of
these units. Of course, at finite tempera-
tures entropic contributions can also sta-
bilize energetically less stable structures.

I want to conclude with a discussion of
the scientific importanceof thediscoveryof
QCs. Is their crystallography so fundamen-
tally different from that of periodic crystals
that one can say their discovery induced a
‘paradigm shift in crystallography’ or are
QCs just an exotic addendum to the ever
increasing zoo of crystal structures? Or is
quasiperiodic ordering simply a property

of a state that is intermediate between the
regular, periodic and the amorphous state
as quite a few people think?

“...‘normal science’means research firm-
ly based upon one or more past scientific
achievements, achievements that some
particular scientific community acknowl-
edges for a time as supplying the founda-
tion for its further practice.”[1, p. 10]

Kuhn introduced the term ‘paradigm
shift’ in his book ‘The structure of sci-
entific revolution’, published in 1962.[1]
What is its signature? According to Kuhn
it is a revolutionary, rather than an evolu-
tionary, change in the conceptual basis and
the fundamental tenets of a scientific field,
i.e. a ‘paradigm shift’ is comparable to a
phase transformation of first order rather
than one of second order. As any other ma-
ture science, crystallography has a para-
digm defining what ‘normal science’ in
its field is and what contradicts it. In our
case, ‘normal crystallography’ deals with
periodic crystals, and the discovery of QCs
induced an important change in the mean-
ing of ‘crystal’. Although the generic term
remains ‘crystal’, one distinguishes now
between ‘periodic crystals’ and ‘aperiod-
ic crystals’. The definition of ‘crystal’ is
no longer based on the structure in direct
space but on the properties of the Fourier
spectrum (diffraction pattern) in reciprocal
(Fourier) space. Accordingly, in 1992 the
IUCr Interim Commission on Aperiodic
Crystals suggested the following defini-
tion:[27] “In the following by ‘crystal’ we
mean any solid having an essentially dis-
crete diffraction diagram, and by ‘aperi-
odic crystal’ we mean any crystal in which
three-dimensional lattice periodicity can
be considered to be absent. As an exten-
sion, the latter term will also include those
crystals in which three-dimensional peri-
odicity is too weak to describe significant
correlations in the atomic configuration,
but which can be properly described by
crystallographic methods developed for
actual aperiodic crystals.”

In other words, a periodic nD crys-
tal structure has a Fourier spectrum with
Fourier coefficients everywhere zero ex-
cept at the points which are nodes of an
nD reciprocal lattice. mD aperiodic crystal
structures can be described as intersec-
tions of nD periodic crystal structures with
the mD physical space (n > m). In Fourier
space, this corresponds to a projection
of the nD reciprocal lattice onto the mD
physical space leading to an mD Fourier
module of rank n. If m = 3 and n > 3, then
the crystal is aperiodic.

The change in the definition of a crys-
tal is thus not revolutionary, it is simply an
extension and generalization of the term.
From the point of view of the underlying
physics, there is no discontinuity between

the description and understanding of QCs
and 3D-periodic crystals; the same basic
rules apply: only some parameters have to
be adjusted. The biggest leap in our under-
standing of the solid state is the addition of
the quasiperiodic equilibrium state to the
long known periodic one. Whether the QC
state is also a new ground state (stable at
zero K) remains an open question.

In summary, the discovery of QC did
not ring in a new crystallography; it ex-
tended the concept of higher-dimensional
crystallography,whichwas alreadywell es-
tablished for incommensuratelymodulated
phases and composite structures. From this
point of view, it was not a paradigm shift
for crystallography. It was a kind of small
scientific revolution, however in the way
crystallographically educated scientists
think. In particular the commonplace that
3D periodicity is a necessary condition for
sharp Bragg reflections had to be revised
and extended to include higher dimen-
sions.
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